Numerical methods for solving optimization problems with differential linear matrix inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of problems for dynamic analyze, state estimation, and control design for linear and nonlinear system with uncertain disturbancies can be reduced to optimization problems with differential linear matrix inequalities. The numerical methods are offered for solving such problems by discretization on the considered interval and reducing to the set of interconnected optimization problems at discrete points in time with constraints in the form of linear matrix inequalities. The proposed methods, in comparison with those existing in the literature, guarantee the fulfillment of the differential constaints and allow one to determine the control gain not only at the sampling points but at all points inside the considered time interval.
Keywords: state estimation, differential linear matrix inequalities, optimization problem, numerical solution, control design.
@article{IVM_2020_4_a6,
     author = {A. I. Malikov and D. I. Dubakina},
     title = {Numerical methods for solving optimization problems with differential linear matrix inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--86},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a6/}
}
TY  - JOUR
AU  - A. I. Malikov
AU  - D. I. Dubakina
TI  - Numerical methods for solving optimization problems with differential linear matrix inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 74
EP  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a6/
LA  - ru
ID  - IVM_2020_4_a6
ER  - 
%0 Journal Article
%A A. I. Malikov
%A D. I. Dubakina
%T Numerical methods for solving optimization problems with differential linear matrix inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 74-86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a6/
%G ru
%F IVM_2020_4_a6
A. I. Malikov; D. I. Dubakina. Numerical methods for solving optimization problems with differential linear matrix inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 74-86. http://geodesic.mathdoc.fr/item/IVM_2020_4_a6/

[1] Boyd S., El Ghaoui L., Feron E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994 | MR | Zbl

[2] Boyd S., Vandenberghe L., Convex optimization, Cambridge Univ. Pr., 2004 | MR | Zbl

[3] Polyak B.T., Khlebnikov M.V., Scherbakov P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmuscheniyakh, LENAND, M., 2014

[4] Amato F., Ambrosino R., Ariola M., Cosentino C., De Tommasi G., Finite-time stability and control, Lect. Notes in Control and Information Sci., Springer, London, 2014 | DOI | MR | Zbl

[5] Malikov A.I., “Otsenivanie sostoyaniya i stabilizatsiya nepreryvnykh sistem s neopredelennymi nelineinostyami i vozmuscheniyami”, Avtomatika i telemekhanika, 2016, no. 5, 19–36 | Zbl

[6] Malikov A.I., “Upravlenie na konechnom intervale nelineinykh sistem odnogo klassa s $H_{\infty}$-kriteriem kachestva”, Izv. RAN. Teoriya i sistemy upravleniya, 2017, no. 3, 25–46 | DOI | Zbl

[7] Malikov A.I., “Sintez nablyudatelei sostoyaniya po rezultatam izmerenii dlya nelineinykh Lipshitsevykh sistem s neopredelennymi vozmuscheniyami”, Avtomatika i telemekhanika, 2017, no. 5, 16–35 | Zbl

[8] Malikov A.I., “State and unknown inputs finite-time estimation for time-varying nonlinear lipschitz systems with uncertain disturbances”, IFAC-PapersOnLine, 50:1 (2017), 1439–1444 | DOI | MR

[9] Malikov A.I., “Sintez nablyudatelei sostoyaniya i neizvestnykh vkhodov dlya nelineinykh lipshitsevykh sistem s neopredelennymi vozmuscheniyami”, Avtomatika i telemekhanika, 2018, no. 3, 21–43 | Zbl

[10] Guo Yang, Yao Yu, Wang Shiching, Yang Baoqinq, Liu Kai, Zhao Xin, “Finite-time control with H-infinity constraints of linear time-invariant and time-varying systems”, J. Control Theory Appl., 11:2 (2013), 165–172 | DOI | MR