Regularization of a nonstandard Cauchy problem for a dynamic Lame system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 54-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Cauchy problem for the dynamic systems Lame in a cylinder $G_T=D\times(0,T)$ over a domain $D$ in $R^3$ with data on a strip lying on the lateral surface. The strip is of the form $S\times(0,T)$, where $S-$ is an open subset of the boundary of $D$. The problem is ill-posed. Under natural restrictions on the configuration of $S$ we derive an explicit formula for solutions of this problem.
Keywords: Cauchy problem, system theory of elasticity, elliptic system, ill-posed problem.
@article{IVM_2020_4_a4,
     author = {I. E. Niyozov},
     title = {Regularization of a nonstandard {Cauchy} problem for a dynamic {Lame} system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--63},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a4/}
}
TY  - JOUR
AU  - I. E. Niyozov
TI  - Regularization of a nonstandard Cauchy problem for a dynamic Lame system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 54
EP  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a4/
LA  - ru
ID  - IVM_2020_4_a4
ER  - 
%0 Journal Article
%A I. E. Niyozov
%T Regularization of a nonstandard Cauchy problem for a dynamic Lame system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 54-63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a4/
%G ru
%F IVM_2020_4_a4
I. E. Niyozov. Regularization of a nonstandard Cauchy problem for a dynamic Lame system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 54-63. http://geodesic.mathdoc.fr/item/IVM_2020_4_a4/

[1] Agranovich M.S., Vishik M.I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (117) (1964), 53–161 | MR | Zbl

[2] Tarkhanov N.N., The Cauchy problem for solutions of elliptic equations, v. 7, Akad. Verl., Berlin, 1995 | MR | Zbl

[3] Bochner S., Vorlesungen über Fouriersche Integrale, Akad. Verl., Leipzig, 1932

[4] Gelfand I.M., Shilov G.E., “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl

[5] Yarmukhamedov Sh., “O zadache Koshi dlya uravnenie Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[6] Yarmukhamedov Sh., Yarmukhamedov I., “The Cauchy problem for the Helmholtz equation”, Ill-Posed and Non-Classical Probl. Math. Physics and Anal., VSP, Utrecht, 2003, 143–172 | MR | Zbl

[7] Landis E.M., Oleinik O.A., “Obobschennaya analitichnost i nekotorye svyazannye s nei svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii”, UMN, 29:2 (176) (1974), 190–206 | MR | Zbl

[8] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[9] Puzyrev R.E., Shlapunov A.A., “On an ill-posed problem for the heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 5:3 (2012), 337–348

[10] Makhmudov K.O., Makhmudov O.I., Tarkhanov N.N., “Nestandartnaya zadacha Koshi dlya uravneniya teploprovodnosti”, Matem. zametki, 102:2 (2017), 270–283 | DOI | Zbl

[11] Yarmukhamedov Sh., “Funktsiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 45:3 (2004), 702–719 | MR | Zbl

[12] Makmudov O., Niyozov I., Tarkhanov N., “The Cauchy problem of couple-stress elasticity”, Complex anal. and dynamical systems III, Contemp. Math., 455, Amer. Math. Soc., Providence, RI, 2008, 297–310 | DOI | MR

[13] Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR