Integral estimates for Laguerre polynomials with exponential weight function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 16-25
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the system of functions $\lambda_{1+n}(x)$ generated by the system of Laguerre function. For the functions $\lambda_{1+n}(x)$ different representations in terms of the Laguerre polynomials $L_n^\alpha(x)$ are obtained. Using these representations and asymptotic formulas for the $L_n^\alpha(x)$ polynomials, we investigated the behavior of the functions $\lambda_{1+n}(x)$ on $[0,\infty)$ as $n\rightarrow\infty$ and obtained estimates similar to those for the Laguerre functions
Mots-clés :
Laguerre polynomials, Laguerre functions
Keywords: asymptotic properties.
Keywords: asymptotic properties.
@article{IVM_2020_4_a1,
author = {R. M. Gadzhimirzaev},
title = {Integral estimates for {Laguerre} polynomials with exponential weight function},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {16--25},
publisher = {mathdoc},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a1/}
}
R. M. Gadzhimirzaev. Integral estimates for Laguerre polynomials with exponential weight function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 16-25. http://geodesic.mathdoc.fr/item/IVM_2020_4_a1/