On changing variables in $L^p$-spaces with distributed-microstructure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundedness of the composition operator in the spaces $L^p(V, W^{1,r}(Y_v))$. Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.
Keywords: composition operator, direct integral of Banach spaces.
Mots-clés : Sobolev spaces
@article{IVM_2020_3_a8,
     author = {N. A. Evseev and A. V. Menovschikov},
     title = {On changing variables in $L^p$-spaces with distributed-microstructure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--97},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/}
}
TY  - JOUR
AU  - N. A. Evseev
AU  - A. V. Menovschikov
TI  - On changing variables in $L^p$-spaces with distributed-microstructure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 92
EP  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/
LA  - ru
ID  - IVM_2020_3_a8
ER  - 
%0 Journal Article
%A N. A. Evseev
%A A. V. Menovschikov
%T On changing variables in $L^p$-spaces with distributed-microstructure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 92-97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/
%G ru
%F IVM_2020_3_a8
N. A. Evseev; A. V. Menovschikov. On changing variables in $L^p$-spaces with distributed-microstructure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 92-97. http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/

[1] Showalter R. E., Walkington N. J., “Micro-structure models of diffusion in fissured media”, J. Math. Anal. Appl., 155:1 (1991), 1–20 | DOI | MR | Zbl

[2] Meier S., Böhm M., “A note on the construction of function spaces for distributed miscrostructure models with spatially varying cell geometry”, J. Numer. Anal. Model., 5, suppl. (2008), 109–125 | MR | Zbl

[3] Vodopyanov S.K., Ukhlov A.D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Matem., 2002, no. 10, 11–33

[4] Vodopyanov S.K., Ukhlov A.D., “Funktsii mnozhestva i ikh prilozheniya v teorii prostranstv Lebega i Soboleva. I”, Matem. tr., 6:2 (2003), 14–65 | MR | Zbl

[5] Evseev N.A., Menovschikov A.V., “Operator kompozitsii na prostranstvakh Lebega so smeshannoi normoi”, Matem. zametki, 105:6 (2019), 816–823 | DOI | Zbl

[6] Vodop'yanov S. K., “$\mathcal P$-differentiability on Carnot groups in different topologies and related topics”, Tr. po analizu i geometrii, Izd-vo in-ta matem. im. S. L. Soboleva SO RAN, Novosibirsk, 2000, 603–670 | Zbl

[7] Evseev N., Menovschikov A., Mixed Operators on $L_p$-Direct Integrals, 2019, arXiv: 1902.02983

[8] Vodopyanov S.K., “Osnovy kvazikonformnogo analiza dvukhindeksnoi shkaly prostranstvennykh otobrazhenii”, Sib. matem. zhurn., 59:5 (2018), 1020–1056 | MR | Zbl