On changing variables in $L^p$-spaces with distributed-microstructure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 92-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the boundedness of the composition operator in the spaces $L^p(V, W^{1,r}(Y_v))$. Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.
Keywords:
composition operator, direct integral of Banach spaces.
Mots-clés : Sobolev spaces
Mots-clés : Sobolev spaces
@article{IVM_2020_3_a8,
author = {N. A. Evseev and A. V. Menovschikov},
title = {On changing variables in $L^p$-spaces with distributed-microstructure},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {92--97},
publisher = {mathdoc},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/}
}
TY - JOUR AU - N. A. Evseev AU - A. V. Menovschikov TI - On changing variables in $L^p$-spaces with distributed-microstructure JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 92 EP - 97 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/ LA - ru ID - IVM_2020_3_a8 ER -
N. A. Evseev; A. V. Menovschikov. On changing variables in $L^p$-spaces with distributed-microstructure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 92-97. http://geodesic.mathdoc.fr/item/IVM_2020_3_a8/