On the root-class residuality of certain free products of groups with normal amalgamated subgroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 48-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be a root class of groups closed under taking quotient groups, $G$ be a free product of groups $A$ and $B$ with amalgamated subgroups $H$ and $K$. Let also $H$ be normal in $A$, $K$ be normal in $B$, and $\operatorname{Aut}_{G}(H)$ denote the set of automorphisms of $H$ induced by all inner automorphisms of $G$. We prove a criterion for $G$ to be residually a $\mathcal{K}$-group provided $\operatorname{Aut}_{G}(H)$ is an abelian group or it satisfies some other conditions. We apply this result in the cases when $A$ and $B$ are bounded nilpotent groups or $A/H, B/K \in \mathcal{K}$.
Keywords: generalized free product, residual finiteness, residual $p$-finiteness, residual solvability, root-class residuality.
@article{IVM_2020_3_a3,
     author = {E. V. Sokolov and E. A. Tumanova},
     title = {On the root-class residuality of certain free products of groups with normal amalgamated subgroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--63},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a3/}
}
TY  - JOUR
AU  - E. V. Sokolov
AU  - E. A. Tumanova
TI  - On the root-class residuality of certain free products of groups with normal amalgamated subgroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 48
EP  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a3/
LA  - ru
ID  - IVM_2020_3_a3
ER  - 
%0 Journal Article
%A E. V. Sokolov
%A E. A. Tumanova
%T On the root-class residuality of certain free products of groups with normal amalgamated subgroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 48-63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a3/
%G ru
%F IVM_2020_3_a3
E. V. Sokolov; E. A. Tumanova. On the root-class residuality of certain free products of groups with normal amalgamated subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 48-63. http://geodesic.mathdoc.fr/item/IVM_2020_3_a3/

[1] Maltsev A.I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivanovsk. gos. ped. in-ta, 18 (1958), 49–60

[2] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[3] Azarov D.N., Tedzho D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivanovsk. gos. un-ta. Matem., 2002, no. 5, 6–10

[4] Tieudjo D., “On root-class residuality of some free constructions”, J. Algebra, Number Theory Appl., 18:2 (2010), 125–143 | MR | Zbl

[5] Sokolov E. V., “A characterization of root classes of groups”, Comm. Algebra, 43:2 (2015), 856–860 | DOI | MR | Zbl

[6] Sokolov E.V., “Ob approksimiruemosti otnositelno sopryazhennosti nekotorykh svobodnykh konstruktsii grupp kornevymi klassami konechnykh grupp”, Matem. zametki, 97:5 (2015), 767–780 | DOI | MR | Zbl

[7] Goltsov D.V., “Approksimiruemost HNN-rasshireniya s tsentralnymi svyazannymi podgruppami kornevym klassom grupp”, Matem. zametki, 97:5 (2015), 665–669 | DOI | MR | Zbl

[8] Tumanova E.A., “Ob approksimiruemosti kornevymi klassami grupp obobschennykh svobodnykh proizvedenii s normalnym ob'edineniem”, Izv. vuzov. Matem., 2015, no. 10, 27–44 | MR | Zbl

[9] Sokolov E.V., Tumanova E.A., “Dostatochnye usloviya approksimiruemosti nekotorykh obobschennykh svobodnykh proizvedenii kornevymi klassami grupp”, Sib. matem. zhurn., 57:1 (2016), 171–185 | MR | Zbl

[10] Sokolov E.V., “Ob otdelimosti podgrupp nilpotentno approksimiruemykh grupp v klasse konechnykh $\pi$-grupp”, Sib. matem. zhupn., 58:1 (2017), 219–229 | MR | Zbl

[11] Tumanova E.A., “Ob approksimiruemosti kornevymi klassami grupp Baumslaga–Solitera”, Sib. matem. zhurn., 58:3 (2017), 700–709 | MR | Zbl

[12] Sokolov E.V., Tumanova E.A., “Approksimiruemost kornevymi klassami HNN-rasshirenii s tsentralnymi tsiklicheskimi svyazannymi podgruppami”, Matem. zametki, 102:4 (2017), 597–612 | DOI | Zbl

[13] Tumanova E.A., “Approksimiruemost kornevymi klassami grupp drevesnykh proizvedenii s ob'edinennymi retraktami”, Sib. matem. zhurn., 60:4 (2019), 891–906 | Zbl

[14] Azarov D.N., “Approksimiruemost nekotorymi klassami konechnykh grupp obobschennogo svobodnogo proizvedeniya grupp s normalnoi ob'edinennoi podgruppoi”, Sib. matem. zhupn., 56:2 (2015), 249–264 | MR | Zbl

[15] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974

[16] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1:3 (1964), 301–305 | DOI | MR | Zbl

[17] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl

[18] Loginova E.D., “Finitnaya approksimiruemost svobodnogo proizvedeniya dvukh grupp s kommutiruyuschimi podgruppami”, Sib. matem. zhurn., 40:2 (1999), 395–407 | MR | Zbl

[19] Tumanova E.A., “Ob approksimiruemosti konechnymi $\pi$-gruppami obobschennykh svobodnykh proizvedenii grupp”, Matem. zametki, 95:4 (2014), 605–614 | DOI | MR | Zbl

[20] Sokolov E.V., “Ob otdelimosti podgrupp nilpotentnykh grupp v klasse konechnykh $\pi$-grupp”, Sib. matem. zhurn., 55:6 (2014), 1381–1390 | MR | Zbl

[21] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | MR

[22] Kuvaev A.E., Sokolov E.V., “Neobkhodimye usloviya approksimiruemosti obobschennykh svobodnykh proizvedenii i HNN-rasshirenii grupp”, Izv. vuzov. Matem., 2017, no. 9, 36–47 | MR | Zbl

[23] Moldavanskii D.I., Vvedenie v kombinatornuyu teoriyu grupp, Ivanovsk. gos. un-t, Ivanovo, 2018