On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of mean-square approximation of analytic functions in simply connected domain of complex plane with Fourier series by orthogonal in the domain of system of functions. For the some class of analytic functions in unit disk the supremum of mean-square approximation given by special module of continuity were calculated.
Keywords: supremum, module of continuity, Jackson–Stechkin inequality, $n$-widths, $\mathscr{K}$-functional.
@article{IVM_2020_2_a6,
     author = {M. Sh. Shabozov and Kh. M. Khuromonov},
     title = {On the best approximation in the mean of functions of a complex variable by {Fourier} series in the {Bergman} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--92},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - Kh. M. Khuromonov
TI  - On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 74
EP  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/
LA  - ru
ID  - IVM_2020_2_a6
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A Kh. M. Khuromonov
%T On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 74-92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/
%G ru
%F IVM_2020_2_a6
M. Sh. Shabozov; Kh. M. Khuromonov. On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92. http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/

[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964

[2] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, ZhVMMF, 50:6 (2010), 999–1004 | MR | Zbl

[3] Vakarchuk S. B., Shvachko A. V., “O nailuchshei approksimatsii v srednem algebraicheskimi polinomami s vesom i tochnykh znacheniyakh poperechnikov klassov funktsii”, Ukr. matem. zhurn., 65:12 (2013), 1604–1621

[4] Vakarchuk S. B., Shvachko A. V., “O nailuchshem priblizhenii v srednem s vesom Chebysheva–Ermita algebraicheskimi polinomami na vsei veschestvennoi osi”, Zbirnik prots In-tu matem. NAN Ukraini, 10:1 (2013), 28–38 | Zbl

[5] Shabozov M. Sh., Saidusainov M. S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi premennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | MR

[6] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR | Zbl

[7] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[8] Ditzian Z., Totik V., “$K$-functionals and best polynomial approximation in weighted $L^{p}(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl

[9] Ditzian Z., Totik V., Moduli of smoothness, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1987 | MR | Zbl

[10] Vakarchuk S. B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva–Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95:5 (2014), 666–684 | DOI | Zbl

[11] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976

[12] Shevchuk I. A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992