On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of mean-square approximation of analytic functions in simply connected domain of complex plane with Fourier series by orthogonal in the domain of system of functions. For the some class of analytic functions in unit disk the supremum of mean-square approximation given by special module of continuity were calculated.
Keywords: supremum, module of continuity, Jackson–Stechkin inequality, $n$-widths, $\mathscr{K}$-functional.
@article{IVM_2020_2_a6,
     author = {M. Sh. Shabozov and Kh. M. Khuromonov},
     title = {On the best approximation in the mean of functions of a complex variable by {Fourier} series in the {Bergman} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--92},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - Kh. M. Khuromonov
TI  - On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 74
EP  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/
LA  - ru
ID  - IVM_2020_2_a6
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A Kh. M. Khuromonov
%T On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 74-92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/
%G ru
%F IVM_2020_2_a6
M. Sh. Shabozov; Kh. M. Khuromonov. On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92. http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/