Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_2_a6, author = {M. Sh. Shabozov and Kh. M. Khuromonov}, title = {On the best approximation in the mean of functions of a complex variable by {Fourier} series in the {Bergman} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--92}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/} }
TY - JOUR AU - M. Sh. Shabozov AU - Kh. M. Khuromonov TI - On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 74 EP - 92 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/ LA - ru ID - IVM_2020_2_a6 ER -
%0 Journal Article %A M. Sh. Shabozov %A Kh. M. Khuromonov %T On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 74-92 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/ %G ru %F IVM_2020_2_a6
M. Sh. Shabozov; Kh. M. Khuromonov. On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92. http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/
[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964
[2] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, ZhVMMF, 50:6 (2010), 999–1004 | MR | Zbl
[3] Vakarchuk S. B., Shvachko A. V., “O nailuchshei approksimatsii v srednem algebraicheskimi polinomami s vesom i tochnykh znacheniyakh poperechnikov klassov funktsii”, Ukr. matem. zhurn., 65:12 (2013), 1604–1621
[4] Vakarchuk S. B., Shvachko A. V., “O nailuchshem priblizhenii v srednem s vesom Chebysheva–Ermita algebraicheskimi polinomami na vsei veschestvennoi osi”, Zbirnik prots In-tu matem. NAN Ukraini, 10:1 (2013), 28–38 | Zbl
[5] Shabozov M. Sh., Saidusainov M. S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi premennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | MR
[6] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR | Zbl
[7] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980
[8] Ditzian Z., Totik V., “$K$-functionals and best polynomial approximation in weighted $L^{p}(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl
[9] Ditzian Z., Totik V., Moduli of smoothness, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1987 | MR | Zbl
[10] Vakarchuk S. B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva–Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95:5 (2014), 666–684 | DOI | Zbl
[11] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976
[12] Shevchuk I. A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992