On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem
of mean-square approximation of analytic functions in simply
connected domain of complex plane with Fourier series by orthogonal
in the domain of system of functions. For the some class of analytic
functions in unit disk the supremum of mean-square approximation
given by special module of continuity were calculated.
Keywords:
supremum, module of continuity, Jackson–Stechkin inequality, $n$-widths, $\mathscr{K}$-functional.
@article{IVM_2020_2_a6,
author = {M. Sh. Shabozov and Kh. M. Khuromonov},
title = {On the best approximation in the mean of functions of a complex variable by {Fourier} series in the {Bergman} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {74--92},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/}
}
TY - JOUR AU - M. Sh. Shabozov AU - Kh. M. Khuromonov TI - On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 74 EP - 92 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/ LA - ru ID - IVM_2020_2_a6 ER -
%0 Journal Article %A M. Sh. Shabozov %A Kh. M. Khuromonov %T On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 74-92 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/ %G ru %F IVM_2020_2_a6
M. Sh. Shabozov; Kh. M. Khuromonov. On the best approximation in the mean of functions of a complex variable by Fourier series in the Bergman space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 74-92. http://geodesic.mathdoc.fr/item/IVM_2020_2_a6/