Weighted estimates for commutators of Hausdorff operators on the Heisenberg group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 39-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to give some sufficient conditions for the boundedness of commutators of Hausdorff operators with symbols in weighted central BMO type spaces on the Herz spaces, central Morrey spaces and Morrey–Herz spaces associated with both power weights and Muckenhoupt weights on the Heisenberg group.
Keywords: commutator, Hausdorff operator, Morrey–Herz space, central BMO space, $A_p$ weight, Heisenberg group.
@article{IVM_2020_2_a4,
     author = {Nguyen Minh Chuong and Dao Van Duong and Nguyen Duc Duyet},
     title = {Weighted estimates for commutators of {Hausdorff} operators on the {Heisenberg} group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--62},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a4/}
}
TY  - JOUR
AU  - Nguyen Minh Chuong
AU  - Dao Van Duong
AU  - Nguyen Duc Duyet
TI  - Weighted estimates for commutators of Hausdorff operators on the Heisenberg group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 39
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_2_a4/
LA  - ru
ID  - IVM_2020_2_a4
ER  - 
%0 Journal Article
%A Nguyen Minh Chuong
%A Dao Van Duong
%A Nguyen Duc Duyet
%T Weighted estimates for commutators of Hausdorff operators on the Heisenberg group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 39-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_2_a4/
%G ru
%F IVM_2020_2_a4
Nguyen Minh Chuong; Dao Van Duong; Nguyen Duc Duyet. Weighted estimates for commutators of Hausdorff operators on the Heisenberg group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 39-62. http://geodesic.mathdoc.fr/item/IVM_2020_2_a4/

[1] Hausdorff F., “Summation methoden und Momentfolgen, I”, Math. Z., 9 (1921), 74–109 | DOI | MR | Zbl

[2] Hurwitz W. A., Silverman L. L., “The consistency and equivalence of certain definitions of summabilities”, Trans. Amer. Math. Soc., 18 (1917), 1–20 | DOI | MR | Zbl

[3] Brown G., Móricz F., “Multivariate Hausdorff operators on the spaces $L^p(\mathbb R^n)$”, J. Math. Anal. Appl., 271:2 (2002), 443–454 | DOI | MR | Zbl

[4] Lerner A., Liflyand E., “Multidimensional Hausdorff operators on the real Hardy space”, J. Austr. Math. Soc., 83:1 (2007), 79–86 | DOI | MR | Zbl

[5] Andersen K. F., Muckenhoupt B., “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions”, Studia Math., 72:1 (1982), 9–26 | DOI | MR | Zbl

[6] Andersen K., Sawyer E., “Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators”, Trans. Amer. Math. Soc., 308:2 (1988), 547–558 | DOI | MR | Zbl

[7] Chuong N. M., Pseudodifferential operators and wavelets over real and p-adic fields, Springer, Cham, 2018 | MR | Zbl

[8] Chuong N. M., Duong D. V., Hung H. D., “Bounds for the weighted Hardy-Cesàro operator and its commutator on weighted Morrey–Herz type spaces”, Z. Anal. Anwend., 35:4 (2016), 489–504 | DOI | MR | Zbl

[9] Chuong N. M., Hung H. D., “Bounds of weighted Hardy-Cesàro operators on weighted Lebesgue and BMO spaces”, Integr. Transforms Special Funct., 25:9 (2014), 697–710 | DOI | MR | Zbl

[10] Christ M., Grafakos L., “Best constants for two non-convolution inequalitie”, Proc. Amer. Math. Soc., 123:6 (1995), 1687–1693 | DOI | MR | Zbl

[11] Fu Z.W., Gong S. L., Lu S.Z., Yuan W., “Weighted multilinear Hardy operators and commutators”, Forum Math., 27:5 (2015), 2825–2851 | MR | Zbl

[12] Xiao J., “$L^p$ and BMO bounds of weighted Hardy–Littlewood averages”, J. Math. Anal. Appl., 262:2 (2001), 660–666 | DOI | MR | Zbl

[13] Chen J., Fan D., Li J., “Hausdorff operators on function spaces”, Chinese Ann. Math., Ser. B, 33:4 (2012), 537–556 | DOI | MR | Zbl

[14] Andersen K. F., “Boundedness of Hausdorff operators on $L^p(\mathbb R^n)$, $H^1(\mathbb R^n)$, and $BMO(\mathbb R^n)$”, Acta Sci. Math. (Szeged), 69:1 (2003), 409–418 | MR | Zbl

[15] Liflyand E., Móricz F., “The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb R)$”, Proc. Amer. Math. Soc., 128:5 (2000), 1391–1396 | DOI | MR | Zbl

[16] Liflyand E., Miyachi A., “Boundedness of the Hausdorff operators in $H^p$ spaces, $0 p 1$”, Studia Math., 194:3 (2009), 279–292 | DOI | MR | Zbl

[17] Liflyand E., Miyachi A., “Boundedness of multidimensional Hausdorff operators in $H^p$ spaces, $0 p 1$”, Trans. Amer. Math. Soc., 371:7 (2019), 4793–4814 | DOI | MR | Zbl

[18] Fu Z.W., Liu Z. G., Lu S.Z., “Commutators of weighted Hardy operators”, Proc. Amer. Math. Soc., 137:10 (2009), 3319–3328 | DOI | MR | Zbl

[19] Tang C., Xue F., Zhou Y., “Commutators of weighted Hardy operators on Herz-type spaces”, Ann. Polon. Math., 101:3 (2011), 267–273 | DOI | MR | Zbl

[20] Chuong N. M., Duong D. V., “The $p$-adic weighted Hardy–Cesàro operators on weighted Morrey–Herz space”, $p-$Adic numbers, Ultrametric Anal. Appl.,, 8:3 (2016), 204–216 | DOI | MR | Zbl

[21] Chuong N. M., Duong D. V., Dung K. H., “Some estimates for p-adic rough multilinear Hausdorff operators and commutators on weighted Morrey–Herz type spaces”, Russian J. Math. Phys., 26:1 (2019), 9–31 | DOI | MR | Zbl

[22] Hung H. D., “The $p$-adic weighted Hardy–Cesàro operator and an application to discrete Hardy inequalities”, J. Math. Anal. Appl., 409:2 (2014), 868–879 | DOI | MR | Zbl

[23] Rim K. S., Lee J., “Estimates of weighted Hardy–Littlewood averages on the $p$-adic vector space”, J. Math. Anal. Appl., 324:2 (2006), 1470–1477 | DOI | MR | Zbl

[24] Volosivets S. S., “Operatory Khausdorfa na $p$-adicheskikh lineinykh prostranstvakh i ikh svoistva v prostranstvakh Khardi, BMO i Geldera”, Matem. zametki, 93:3 (2013), 357–367 | DOI | Zbl

[25] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[26] Thangavelu S., Harmonic analysis on the Heisenberg group, Birkhäuser, Boston, 1998 | MR | Zbl

[27] Chu J. Y., Fu Z.W., Wu Q.Y., “$L^p$ and $BMO$ bounds for weighted Hardy operators on the Heisenberg group”, J. Inequal. Appl., 2016, 282, 12 pp. | DOI | MR

[28] Guo J. H., “Hausdorff operators on the Heisenberg group”, Acta Math. Sin., Engl. Ser., 31:11 (2015), 1703–1714 | DOI | MR | Zbl

[29] Ruan J., Fan D., Wu Q., “Weighted Herz space estimates for Hausdorff operators on the Heisenberg group”, Banach J. Math. Anal., 11:3 (2017), 513–535 | DOI | MR | Zbl

[30] Ruan J., Fan D., Wu Q., “Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group”, Math. Inequal. Appl., 22:1 (2019), 303–329 | MR

[31] Volosivets S. S., “Weighted Hardy and Cesàro operators on Heisenberg group and their norms”, Integr. Transforms Special Funct., 28:12 (2017), 940–952 | DOI | MR | Zbl

[32] Wu Q., Fu Z., “Sharp estimates for Hardy operators on Heisenberg group”, Front. Math. China, 11:1 (2016), 155–172 | DOI | MR | Zbl

[33] Wu Q., Fan D., “Hardy space estimates of Hausdorff operators on the Heisenberg group”, Nonlinear Anal., 164 (2017), 135–154 | DOI | MR | Zbl

[34] Calderón A. P., “Commutators of singular integral operators”, Proc. Nat. Acad. Sci. U.S.A., 53:5 (1965), 1092–1099 | DOI | MR | Zbl

[35] Dong H. J., Kim D. Y., “Elliptic equations in divergence form with partially BMO coefficients”, Arch. Rational Mech. Anal., 196:1 (2010), 25–70 | DOI | MR | Zbl

[36] Sun Y. Z., Wang C., Zhang Z. F., “A Beale–Kato–Majda blow up criterion for the $3$-D compressible Navier–Stokes equations”, J. Math. Pures Appl., 95:1 (2011), 36–47 | DOI | MR | Zbl

[37] Chuong N. M., Duong D. V., Dung K. H., Weighted norm inequalities for rough Hausdorff operator and its commutators on the Heisenberg group, submitted, 2018 | MR

[38] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[39] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[40] Hytönen T., Pérez C. P., Rela E., “Sharp reverse Hölder property for $A_{\infty}$ weights on spaces of homogeneous type”, J. Funct. Anal., 263:12 (2012), 3883–3899 | DOI | MR | Zbl

[41] Indratno S., Maldonado D., Silwal S., “A visual formalism for weights satisfying reverse inequalities”, Expo. Math., 33:1 (2015), 1–29 | DOI | MR | Zbl

[42] Lu S., Ding Y., Yan D., Singular integrals and related topics, World Sci. Publ. Company, Singapore, 2007 | Zbl