Integro-differential equations over a closed circuit with Gaussian function in the kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integro-differential equations with kernels including hypergeometric Gaussian function that depends on the arguments ratio are studied over a closed curve in the complex plane. Special cases of the equations considered are the special integro-differential equation with Cauchy kernel, equations with power and logarithmic kernels. By means of the curvilinear convolution operator with the kernel of special kind, the equations with derivatives are reduced to the equations without derivatives. We find out the connection between special cases of the above-mentioned convolution operator and the known integral representations of piecewise analytical functions applied in the study of boundary value problems of the Riemann type. The correct statement of Noetherian property for the investigated class of equations is given. In this case, the operators corresponding to the equations are considered acting from the space of summable functions into the space of fractional integrals of the curvilinear convolution type. Examples of integro-differential equations solvable in a closed form are given.
Keywords: integro-differential equation, operator of the curvilinear convolution, integral representations of a piecewise analytic function, Noetherian property of the equation.
@article{IVM_2020_1_a6,
     author = {A. I. Peschansky},
     title = {Integro-differential equations over a closed circuit with {Gaussian} function in the kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--93},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a6/}
}
TY  - JOUR
AU  - A. I. Peschansky
TI  - Integro-differential equations over a closed circuit with Gaussian function in the kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 84
EP  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_1_a6/
LA  - ru
ID  - IVM_2020_1_a6
ER  - 
%0 Journal Article
%A A. I. Peschansky
%T Integro-differential equations over a closed circuit with Gaussian function in the kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 84-93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_1_a6/
%G ru
%F IVM_2020_1_a6
A. I. Peschansky. Integro-differential equations over a closed circuit with Gaussian function in the kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 84-93. http://geodesic.mathdoc.fr/item/IVM_2020_1_a6/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[3] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970

[4] Peschanskii A. I., “Integralnye uravneniya tipa krivolineinoi svertki s gipergeometricheskoi funktsiei v yadre”, Izv. vuzov. Matem., 2019, no. 9, 50–62

[5] Krikunov Yu. M., “O reshenii obobschennoi kraevoi zadachi Rimana i lineinogo singulyarnogo integro-differentsialnogo uravneniya”, Uchen. zap. Kazansk. un-ta, 112, no. 10, 1952, 191–199

[6] Isakhanov R. S., “Differentsialnaya granichnaya zadacha lineinogo sopryazheniya i ee primenenie k teorii integro-differentsialnykh uravnenii”, Soobsch. AN GruzSSR, 20:6 (1958), 659–666

[7] Vekua N. P., “Ob odnoi sisteme singulyarnykh integro-differentsialnykh uravnenii i ee prilozheniyakh v granichnykh zadachakh lineinogo sopryazheniya”, Tr. Tbilissk. matem. in-ta AN GruzSSR, 24, 1957, 135–147 | Zbl

[8] Zhegalov V. I., “O zadachakh s proizvodnymi v kraevykh usloviyakh”, Tr. semin. po kraevym zadacham, 10, 1973, 38–52 | Zbl

[9] Rogozhin V. S., “Novoe integralnoe predstavlenie kusochno-golomorfnoi funktsii i ego prilozheniya”, DAN SSSR, 135:4 (1960), 791–793 | Zbl

[10] Saks R. S., Kraevye zadachi dlya ellipticheskikh sistem differentsialnykh uravnenii, Izd-vo NGU, Novosibirsk, 1975

[11] Tovmasyan N. E., “K teorii singulyarnykh integralnykh uravnenii”, Differents. uravneniya, 3:1 (1967), 69–80 | MR | Zbl

[12] Peschanskii A. I., Cherskii Yu. I., “Integralnoe uravnenie s krivolineinymi svertkami na zamknutom konture”, Ukr. matem. zhurn., 36:3 (1984), 335–340 | MR

[13] Peschanskii A. I., “Ob opisanii prostranstva drobnykh integralov tipa krivolineinoi svertki”, Izv. vuzov. Matem., 1989, no. 7, 29–39 | MR

[14] Peschanskii A. I., “Ob opisanii prostranstva $L_{\text{p}}^{\eta }(\Gamma )$ drobnykh integralov tipa krivolineinoi svertki”, Mater. XXY Mezhdunarodn. nauch.-tekhn. konf. “Prikladnye zadachi matematiki” (Sevastopol, 18–22 sentyabrya 2017), Izd-vo SevGU, Sevastopol, 2017

[15] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973