Nonlocal inverse problem to find unknown multipliers in right part of Lavrentev--Bitsadze equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 46-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation of mixed elliptic-hyperbolic type. Right part of this equation is represented as a product of two functions, each of a single variable. We study an inverse problem for this equation to find unknown multipliers. We establish a criterion of the uniqueness of a solution to this problem. Solution was constructed as a sums of series on the systems of eigenfunctions corresponding one-dimensional spectral problem. We have obtained estimates bounded away from zero for small denominators. The existence and stability is proved under certain conditions upon the ratio of the rectangle sides of hyperbolic part of the equation, upon boundary functions and known multipliers in the right parts of equation.
Keywords: equation of mixed type, inverse problem, spectral method, uniqueness, small denominators, stability.
Mots-clés : existence
@article{IVM_2020_1_a4,
     author = {N. V. Martemyanova},
     title = {Nonlocal inverse problem to find unknown multipliers in right part of {Lavrentev--Bitsadze} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--63},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a4/}
}
TY  - JOUR
AU  - N. V. Martemyanova
TI  - Nonlocal inverse problem to find unknown multipliers in right part of Lavrentev--Bitsadze equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 46
EP  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_1_a4/
LA  - ru
ID  - IVM_2020_1_a4
ER  - 
%0 Journal Article
%A N. V. Martemyanova
%T Nonlocal inverse problem to find unknown multipliers in right part of Lavrentev--Bitsadze equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 46-63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_1_a4/
%G ru
%F IVM_2020_1_a4
N. V. Martemyanova. Nonlocal inverse problem to find unknown multipliers in right part of Lavrentev--Bitsadze equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 46-63. http://geodesic.mathdoc.fr/item/IVM_2020_1_a4/

[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[2] Kraiko A. N., Makarov V. E., Pudovikov D. E., “K postroeniyu golovnoi udarnoi volny pri “obratnom” raschete sverkhzvukovogo techeniya metodom kharakteristik”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1889–1894 | MR

[3] Kraiko A. N., Pyankov K. S., “Postroenie profilei i motogondol, superkriticheskikh v okolozvukovom potoke idealnogo gaza”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1890–1904 | MR

[4] Aleksandrov V. G., Kraiko A. N., Reent K. S., “Integralnye i lokalnye kharakteristiki sverkhzvukovogo pulsiruyuschego detonatsionnogo pryamotochnogo dvigatelya”, Matem. modelirovanie, 15:6 (2000), 17–26

[5] Sabitov K. B., Khadzhi I. A., “Kraevaya zadacha dlya uravneniya Lavrenteva–Bitsadze s neizvestnoi pravoi chastyu”, Izv. vuzov. Matem., 2011, no. 5, 44–52 | Zbl

[6] Sabitov K. B., Martemyanova N. V., “Nelokalnaya obratnaya zadacha dlya uravneniya smeshannogo tipa”, Izv. vuzov. Matem., 2011, no. 2, 71–85 | Zbl

[7] Sabitov K. B., Martemyanova N. V., “Obratnaya zadacha dlya uravneniya elliptiko-giperbolicheskogo tipa s nelokalnym granichnym usloviem”, Sib. matem. zhurn., 53:3 (2012), 633–647 | MR | Zbl

[8] Sabitov K. B., Martemyanova N. V., “Nonlocal boundary problem for the third order equation of mixed type”, Contemp. Anal. Appl. Math., 3:2 (2015), 153–169 | MR

[9] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198

[10] Arsenin V. Ya., Tikhonov A. N., Metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1974

[11] Lavrentev M. M., Romanov V. G., Shishatskii S. T., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[12] Lavrentev M. M., Reznitskaya K. G., Yakno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka SO, Novosibirsk, 1982

[13] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[14] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, MGU, M., 1994 | MR

[15] Prilepko A. I., Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., New York–Basel, 1999 | MR

[16] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauchn. iz-vo, Novosibirsk, 2009

[17] Denisov A. M., “Zadachi opredeleniya neizvestnogo istochnika v parabolicheskom i giperbolicheskom uravneniyakh”, Zh. vychisl. matem. i matem. fiz., 55:5 (2015), 830–835 | DOI | Zbl

[18] Kozhanov A. I., “Obratnye zadachi vosstanovleniya pravoi chasti spetsialnogo vida v parabolicheskom uravnenii”, Matem. zametki SVFU, 23:4 (2016), 31–45 | Zbl

[19] Kamynin V. L., “Obratnaya zadacha opredeleniya pravoi chasti v vyrozhdayuschemsya parabolicheskom uravnenii s neogranichennymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 57:5 (2017), 832–841 | DOI | Zbl

[20] Kostin A. B., “Kriterii edinstvennosti resheniya i korrektnosti v obratnoi zadache ob istochnike”, Funkts. analiz, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozh. Temat. obz., 133, VINITI RAN, M., 2017, 81–119

[21] Prilepko A. I., Kostin A. B., Solovev V. V., “Obratnye zadachi nakhozhdeniya istochnika i koeffitsientov dlya ellipticheskikh i parabolicheskikh uravnenii v prostranstvakh Geldera i Soboleva”, Sib. zhurn. chist. i prikl. matem., 17:3 (2017), 67–85 | Zbl

[22] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[23] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[24] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918 | DOI

[25] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966

[26] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR