On the exceptional set of the sum of a prime number and a fixed degree of a prime number
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an enough big real number and let $M$ denote the set natural numbers not exceeding $X$ which cannot be written as a sum a prime and fixed degree of a prime number from arithmetical progression with a difference $d$. Let $E_d (X)=\mathrm{card}\, M.$ We obtain new a numerical sedate estimation for set $E_d (X)$ and an estimation from below for number presentation $n\notin M$ in specified type. We prove estimations is revision and a generalization for arithmetical progression earlier got result by V.A. Plaksin.
Keywords: Dirichlet character, Dirichlet $L$-function, exceptional set, representation numbers, exceptional zero, main member, remaining member.
Mots-clés : exceptional nature
@article{IVM_2020_1_a1,
     author = {I. A. Allakov and A. Sh. Safarov},
     title = {On the exceptional set of the sum of a prime number and a fixed degree of a prime number},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--25},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a1/}
}
TY  - JOUR
AU  - I. A. Allakov
AU  - A. Sh. Safarov
TI  - On the exceptional set of the sum of a prime number and a fixed degree of a prime number
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 11
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_1_a1/
LA  - ru
ID  - IVM_2020_1_a1
ER  - 
%0 Journal Article
%A I. A. Allakov
%A A. Sh. Safarov
%T On the exceptional set of the sum of a prime number and a fixed degree of a prime number
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 11-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_1_a1/
%G ru
%F IVM_2020_1_a1
I. A. Allakov; A. Sh. Safarov. On the exceptional set of the sum of a prime number and a fixed degree of a prime number. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 11-25. http://geodesic.mathdoc.fr/item/IVM_2020_1_a1/

[1] Plaksin V. A., “Ob odnom voprose Khua Lo Kena”, Matem. zametki, 47:3 (1990), 78–90 | MR | Zbl

[2] Plaksin V. A., Isklyuchitelnoe mnozhestvo summy prostogo i fiksirovannoi stepeni prostogo chisla, Dep. VINITI No 7010-84, Petrozavodsk, 1984, 33 pp.

[3] Montgomery H. L., Vaughan R. C., “The exceptional set in Goldbach's problem”, Acta Arith., 27 (1975), 353–370 | DOI | MR | Zbl

[4] Allakov I., Issledovanie plotnosti chislovykh posledovatelnostei analiticheskimi metodami, Diss. na sois. uchen. stepeni doktora fiz.-matem. nauk, Tashkent, 2008, 240 pp. | Zbl

[5] Vinogradov A. I., “O binarnoi probleme Khardi–Litllvuda”, Acta Arith., 46:1 (1985), 33–56 | DOI | MR | Zbl

[6] Vaughan R. C., “A new iterative method in Warings ploblems”, Acta Math., 162:1–2 (1989), 1–71 | DOI | MR | Zbl

[7] Allakov I. A., Isklyuchitelnoe mnozhestvo summy dvukh prostykh chisel, Kand. diss., Leningrad, 1983, 148 pp.

[8] Allakov I. A., Khamzaev E., “Obobschenie odnoi teoremy Gallakhera dlya prostykh chisel arifmeticheskoi progressii”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1987, no. 1, 13–18 | MR | Zbl

[9] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[10] Montgomery H. L., Vaughan R. C., Multiplicative number theory, v. I, Cassical theory, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[11] Davenport R. H., Multiplicative number theory, Second edition, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl

[12] Gallagher P. X., “O large sieve density estimate near $\sigma=1 $”, Invent. Math., 11:4 (1970), 329–339 | DOI | MR | Zbl

[13] Vinogradov A. I., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[14] Allakov I. A., “Otsenka trigonometricheskikh summ po stepenyam prostykh chisel v arifmeticheskoi progressii”, DAN UzSSR, 1990, no. 9, 3–4 | MR | Zbl