Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_12_a1, author = {S. S. Volosivets}, title = {Hausdorff operators of special kind in $BMO$-type spaces and {H\"older--Lipschitz} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--21}, publisher = {mathdoc}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_12_a1/} }
TY - JOUR AU - S. S. Volosivets TI - Hausdorff operators of special kind in $BMO$-type spaces and H\"older--Lipschitz spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 8 EP - 21 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_12_a1/ LA - ru ID - IVM_2020_12_a1 ER -
S. S. Volosivets. Hausdorff operators of special kind in $BMO$-type spaces and H\"older--Lipschitz spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 8-21. http://geodesic.mathdoc.fr/item/IVM_2020_12_a1/
[1] Liflyand E., Móricz F., “The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb R)$”, Proc. Amer. Math. Soc., 128:5 (2000), 1391–1396 | DOI | MR | Zbl
[2] Liflyand E., “Boundedness of multidimensional Hausdorff operators on $H^1(\mathbb R^n)$”, Acta Sci. Math. (Szeged), 74:3–4 (2008), 845–851 | MR | Zbl
[3] Andersen K. F., “Boundedness of Hausdorff operators on $L^p(\mathbb R^n)$, $H^1(\mathbb R^n)$, and $BMO(\mathbb R^n)$”, Acta Sci. Math. (Szeged), 69:1–2 (2003), 409–418 | MR | Zbl
[4] Giang D. V., Móricz F., “The Cesàro operator is bounded on the Hardy space”, Acta Sci. Math. (Szeged), 61:1–4 (1995), 535–544 | MR | Zbl
[5] Golubov B. I., “Ob ogranichennosti operatorov Khardi i Khardi-Littlvuda v prostranstvakh $Re H^1$ i $BMO$”, Matem. sb., 188:7 (1997), 93–106 | MR | Zbl
[6] Korenovskii A., Mean oscillations and equimeasurable rearrangements of functions, Springer, Berlin, 2007 | MR | Zbl
[7] Móricz F., “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\leq p\leq \infty$, $H^1$ and $BMO$”, Acta Sci Math (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl
[8] Xiao J., “$L^p$ and $BMO$ bounds of weighted Hardy-Littlewood averages”, J. Math. Anal. Appl., 262 (2001), 660–666 | DOI | MR | Zbl
[9] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, 2-e izd., Inlit., M., 1948
[10] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[11] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl
[12] Goldberg D. A., “Local version of real Hardy spaces”, Duke Math. J., 46:1 (1979), 27–42 | DOI | MR | Zbl
[13] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[14] Fan D., Lin X., “Hausdorff operator on real Hardy spaces”, Anal. (Berlin), 34:4 (2014), 319–337 | MR | Zbl
[15] Hung H. D., Ky L.D., Quang T. T., “Norm of the Hausdorff operator on the real Hardy space $H^1(\mathbb R)$”, Complex Anal. Oper. Theory, 12:2 (2018), 235–245 | DOI | MR | Zbl
[16] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207:2 (1975), 391–405 | DOI | MR | Zbl
[17] Stein E. M., Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl
[18] Dafni G., “Local $VMO$ and weak convergence on $h^1$”, Canad. Math. Bull., 45:1 (2002), 46–59 | DOI | MR | Zbl
[19] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[20] Volosivets S. S., “On Hardy and Hardy-Littlewood transforms in classes of functions with given majorant of modulus of continuity”, Acta Sci. Math. (Szeged), 75:1–2 (2009), 265–274 | MR | Zbl
[21] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. o-va, 5, 1956, 483–522 | Zbl
[22] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Stud. Math., 55:1 (1976), 87–95 | DOI | MR | Zbl
[23] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3 (1924), 72–94 | DOI | Zbl
[24] Young L. C., “An inequality of Hölder type connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR
[25] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187
[26] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[27] Krayukhin S. A., Volosivets S. S., “Functions of bounded $p$-variation and weighted integrability of Fourier transforms”, Acta Math. Hung., 159:2 (2019), 374–399 | DOI | MR | Zbl
[28] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984
[29] Ruan J., Fan D., “Hausdorff operators on the power weighted Hardy spaces”, J. Math. Anal. Appl., 433:1 (2016), 31–48 | DOI | MR | Zbl
[30] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl