Refined nonlinear deformation model of sandwich plates with composite facings and transversal-soft core
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following up on the results obtained earlier, a refined nonlinear model of static deformation of sandwich plates with transversal-soft core and facings with low transverse shear and transverse compression stiffness is constructed for the case of cylindrical bending. It is based on the use of linear approximations in thickness for deflections of the external layers, cubic approximation in thickness for tangential displacements and simplified three-dimensional equations of elasticity theory, that can be integrated along transverse coordinates and introduce two unknown function, representing constant transverse tangential stresses in thickness. The kinematic relations for the facings are constructed in a geometrically nonlinear quadratic approximation, which allows, take into account the physical nonlinear behavior of the material under transverse shear conditions, to describe in them non-classical transverse-shear forms of stability loss in both compression and bending conditions. To describe the static deformation process with high rates of variability of the parameters of the stress-strain state one-dimensional nonlinear equations of equilibrium and conjugation of the facings with the core by tangential displacements are constructed, which based on the generalized Lagrange variational principle.
Keywords: sandwich plate, geometric nonlinearity, refined equation.
Mots-clés : composite facins, transversal-soft core
@article{IVM_2020_11_a7,
     author = {V. N. Paimushin and M. V. Makarov and N. V. Polyakova},
     title = {Refined nonlinear deformation model of sandwich plates with composite facings and transversal-soft core},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {93--100},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a7/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - M. V. Makarov
AU  - N. V. Polyakova
TI  - Refined nonlinear deformation model of sandwich plates with composite facings and transversal-soft core
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 93
EP  - 100
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a7/
LA  - ru
ID  - IVM_2020_11_a7
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A M. V. Makarov
%A N. V. Polyakova
%T Refined nonlinear deformation model of sandwich plates with composite facings and transversal-soft core
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 93-100
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a7/
%G ru
%F IVM_2020_11_a7
V. N. Paimushin; M. V. Makarov; N. V. Polyakova. Refined nonlinear deformation model of sandwich plates with composite facings and transversal-soft core. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 93-100. http://geodesic.mathdoc.fr/item/IVM_2020_11_a7/

[1] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, ZAMM Zeitschrift fur Angewandte Math. und Mech., 99:1 (2019), 1–25 | MR

[2] Noor A. K., Burton W. S., Bert Ch. W., “Computational models for sandwich panels and shells”, Appl. Mech. Rev., 49:3 (1996), 155–199 | DOI

[3] Paimushin V. N., “A stability theory of sandwich structural elements 1. Analysis of the current state and a refined classification of buckling forms”, Mech. of Composite Materials, 35:6 (1999), 465–470 | DOI

[4] Paimushin V. N., “Teoriya ustoichivosti trekhsloinykh plastin i obolochek (Etapy razvitiya, sovremennoe sostoyanie i napravlenie dalneishikh issledovanii)”, Izv. RAN, MTT, 2001, no. 2, 148–162

[5] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[6] Ivanov V. A., Paimushin V. N., “Utochnennaya teoriya ustoichivosti trekhsloinykh konstruktsii (nelineinye uravneniya dokriticheskogo ravnovesiya obolochek s transversalno-myagkim zapolnitelem)”, Izv. vuzov. Matem., 1994, no. 11, 29–42 | Zbl

[7] Paimushin V. N., “K variatsionnym metodam resheniya prostranstvennykh zadach sopryazheniya deformiruemykh tel”, Dokl. AN SSSR, 273:5 (1983), 1083–1086 | MR