Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_11_a6, author = {N. I. Zhukova and N. G. Chebochko}, title = {The structure of {Lorentzian} foliations of codimension two}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--92}, publisher = {mathdoc}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/} }
N. I. Zhukova; N. G. Chebochko. The structure of Lorentzian foliations of codimension two. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/
[1] Dolgonosova A. Yu., Zhukova N. I., “Pseudo-Riemannian Foliations and their Graphs”, Lobachevskii J. Math., 39:1 (2018), 54–64 | DOI | MR | Zbl
[2] Molino P., Riemannian Foliations, Birkhauser, Boston, 1988 | MR | Zbl
[3] Haefliger A., “Closures of leaves in Riemannian foliations”, A fête of topology, Acad. Press, Boston, 1988, 3–32 | MR
[4] Tondeur P., Geometry of foliations, Birkhauser, Basel, 1997 | MR | Zbl
[5] Wolak R. A., “Leaves of foliations with transverse $G$-srtuctures of finite type”, Pub. UAB, 33 (1989), 153–162 | MR | Zbl
[6] Zhukova N. I., “Local and Global Stability of Compact Leaves and Foliations”, Zhurn. matem. fiz., anal., geom., 9:3 (2013), 400–420 | MR | Zbl
[7] Bagaev A. V., Zhukova N. I., “Transversalno analiticheskie lorentsevy sloeniya korazmernosti dva”, Izv. vuzov. Povolzhsk. region, Fiz.-matem. nauki, 44:4 (2017), 35–47
[8] Tarquini C., “Feuilletages conformes”, Ann. Inst. Fourier, 52:2 (2004), 453–480 | DOI | MR
[9] Frances C., Tarquini C., Autour du théorème de Ferrand-Obata, 21:1 (2007), 51–62 | MR
[10] Zhukova N. I., “Attraktory i analog gipotezy Likhnerovicha dlya konformnykh sloenii”, Sib. matem. zhurn., 52:3 (2011), 436–450 | MR | Zbl
[11] Zhukova N. I., “Globalnye attraktory konformnykh sloenii”, Matem. sb., 203:3 (2012), 79–106 | MR | Zbl
[12] Zhukova N. I., “Attraktory sloenii s transversalnoi parabolicheskoi geometriei ranga odin”, Matem. zametki, 93:5–6 (2013), 436–450
[13] Blumenthal R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[14] Churchill R. C., “On definding chaos in absent of time”, Deterministic chaos in general relativity, NATO Adv. Sci. Inst. Ser. B Phys., 332, eds. Hobill D., Burd A., Coley A. A., 1994, 107–112 | MR
[15] Cairns G., Davis G., Elton D., Kolganova A., Perversi P., “Chaotic group actions”, L'Enseignement mathematique, 41 (1995), 123–133 | MR | Zbl
[16] Beguin F., Bonatti C., Yu B., “Bilding Anosov flows on $3$-manifolds”, Geom. Topol., 21:3 (2017), 1837–1930 | DOI | MR | Zbl
[17] Boubel C., Mounoud P., Tarquini C., “Lorentzian foliations on 3-manifolds”, Ergodic Theory Dynam. System., 26:5 (2006), 1339–1362 | DOI | MR | Zbl
[18] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. MIAN, 256, no. 1, 2007, 115–147 | Zbl