The structure of Lorentzian foliations of codimension two
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 87-92

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to describe the structure of complete Lorentzian foliations $(M, F)$ of codimension two on $n$-dimensional closed manifolds. It is proved that $(M, F)$ is either Riemannian or has a constant transversal curvature and its structure is described. For such foliations $(M, F)$, the criterion is obtained, reducing the chaos problem in $(M, F)$ to the same problem of the associated action of the group $O(1,1)$ on a $3$-dimensional manifold and also to the chaos problem of its global holonomy group, which is a finite-generated discrete subgroup of the isometry group of the plane with the full metric of a constant curvature.
Mots-clés : foliation, Lorentzian foliation
Keywords: global holonomy group, Ehresmann connection.
@article{IVM_2020_11_a6,
     author = {N. I. Zhukova and N. G. Chebochko},
     title = {The structure of {Lorentzian} foliations of codimension two},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - N. G. Chebochko
TI  - The structure of Lorentzian foliations of codimension two
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 87
EP  - 92
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/
LA  - ru
ID  - IVM_2020_11_a6
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A N. G. Chebochko
%T The structure of Lorentzian foliations of codimension two
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 87-92
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/
%G ru
%F IVM_2020_11_a6
N. I. Zhukova; N. G. Chebochko. The structure of Lorentzian foliations of codimension two. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/