The structure of Lorentzian foliations of codimension two
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to describe the structure of complete Lorentzian foliations $(M, F)$ of codimension two on $n$-dimensional closed manifolds. It is proved that $(M, F)$ is either Riemannian or has a constant transversal curvature and its structure is described. For such foliations $(M, F)$, the criterion is obtained, reducing the chaos problem in $(M, F)$ to the same problem of the associated action of the group $O(1,1)$ on a $3$-dimensional manifold and also to the chaos problem of its global holonomy group, which is a finite-generated discrete subgroup of the isometry group of the plane with the full metric of a constant curvature.
Mots-clés : foliation, Lorentzian foliation
Keywords: global holonomy group, Ehresmann connection.
@article{IVM_2020_11_a6,
     author = {N. I. Zhukova and N. G. Chebochko},
     title = {The structure of {Lorentzian} foliations of codimension two},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - N. G. Chebochko
TI  - The structure of Lorentzian foliations of codimension two
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 87
EP  - 92
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/
LA  - ru
ID  - IVM_2020_11_a6
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A N. G. Chebochko
%T The structure of Lorentzian foliations of codimension two
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 87-92
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/
%G ru
%F IVM_2020_11_a6
N. I. Zhukova; N. G. Chebochko. The structure of Lorentzian foliations of codimension two. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2020_11_a6/

[1] Dolgonosova A. Yu., Zhukova N. I., “Pseudo-Riemannian Foliations and their Graphs”, Lobachevskii J. Math., 39:1 (2018), 54–64 | DOI | MR | Zbl

[2] Molino P., Riemannian Foliations, Birkhauser, Boston, 1988 | MR | Zbl

[3] Haefliger A., “Closures of leaves in Riemannian foliations”, A fête of topology, Acad. Press, Boston, 1988, 3–32 | MR

[4] Tondeur P., Geometry of foliations, Birkhauser, Basel, 1997 | MR | Zbl

[5] Wolak R. A., “Leaves of foliations with transverse $G$-srtuctures of finite type”, Pub. UAB, 33 (1989), 153–162 | MR | Zbl

[6] Zhukova N. I., “Local and Global Stability of Compact Leaves and Foliations”, Zhurn. matem. fiz., anal., geom., 9:3 (2013), 400–420 | MR | Zbl

[7] Bagaev A. V., Zhukova N. I., “Transversalno analiticheskie lorentsevy sloeniya korazmernosti dva”, Izv. vuzov. Povolzhsk. region, Fiz.-matem. nauki, 44:4 (2017), 35–47

[8] Tarquini C., “Feuilletages conformes”, Ann. Inst. Fourier, 52:2 (2004), 453–480 | DOI | MR

[9] Frances C., Tarquini C., Autour du théorème de Ferrand-Obata, 21:1 (2007), 51–62 | MR

[10] Zhukova N. I., “Attraktory i analog gipotezy Likhnerovicha dlya konformnykh sloenii”, Sib. matem. zhurn., 52:3 (2011), 436–450 | MR | Zbl

[11] Zhukova N. I., “Globalnye attraktory konformnykh sloenii”, Matem. sb., 203:3 (2012), 79–106 | MR | Zbl

[12] Zhukova N. I., “Attraktory sloenii s transversalnoi parabolicheskoi geometriei ranga odin”, Matem. zametki, 93:5–6 (2013), 436–450

[13] Blumenthal R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[14] Churchill R. C., “On definding chaos in absent of time”, Deterministic chaos in general relativity, NATO Adv. Sci. Inst. Ser. B Phys., 332, eds. Hobill D., Burd A., Coley A. A., 1994, 107–112 | MR

[15] Cairns G., Davis G., Elton D., Kolganova A., Perversi P., “Chaotic group actions”, L'Enseignement mathematique, 41 (1995), 123–133 | MR | Zbl

[16] Beguin F., Bonatti C., Yu B., “Bilding Anosov flows on $3$-manifolds”, Geom. Topol., 21:3 (2017), 1837–1930 | DOI | MR | Zbl

[17] Boubel C., Mounoud P., Tarquini C., “Lorentzian foliations on 3-manifolds”, Ergodic Theory Dynam. System., 26:5 (2006), 1339–1362 | DOI | MR | Zbl

[18] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. MIAN, 256, no. 1, 2007, 115–147 | Zbl