The first boundary problem with an integral condition for a mixed-type equation with a characteristic degeneration
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 46-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mixed equation of elliptic-hyperbolic type in rectangular domain the first boundary problem is investigated. The criterion of uniqueness is established. The solution of the problem is constructed in the form of the sum of a biorthogonal row. Small denominators are appeared in process of proving existence of the solution of the problem. The estimates about a remoteness from zero denominators are established with the corresponding assymptotics which allowed to prove existence of the decision in a class of regular decisions and prove its stability depending on boundary functions.
Keywords: a equation of mixed type, a characteristic degeneration, criterion of uniqueness, a biorthogonal row, small denominators, stability.
Mots-clés : Dirikhle's problem, existense
@article{IVM_2020_11_a3,
     author = {Yu. K. Sabitova},
     title = {The first boundary problem with an integral condition for a mixed-type equation with a characteristic degeneration},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--64},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a3/}
}
TY  - JOUR
AU  - Yu. K. Sabitova
TI  - The first boundary problem with an integral condition for a mixed-type equation with a characteristic degeneration
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 46
EP  - 64
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a3/
LA  - ru
ID  - IVM_2020_11_a3
ER  - 
%0 Journal Article
%A Yu. K. Sabitova
%T The first boundary problem with an integral condition for a mixed-type equation with a characteristic degeneration
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 46-64
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a3/
%G ru
%F IVM_2020_11_a3
Yu. K. Sabitova. The first boundary problem with an integral condition for a mixed-type equation with a characteristic degeneration. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 46-64. http://geodesic.mathdoc.fr/item/IVM_2020_11_a3/

[1] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[2] Kogan M. N., “O magnitogidrodinamicheskikh techeniyakh smeshannogo tipa”, Prikl. matem. i mekhanika, 1 (1961), 132–137

[3] Koul Dzh., Kuk L., Transzvukovaya aerodinamika, Mir, M., 1989

[4] Cannon I. R., “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR

[5] Kamynin L. I., “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zhurn. VM i MF, 4:6 (1964), 1006–1024

[6] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 276–304 | MR

[7] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN, 77:2 (1951), 181–184

[8] Karol I. L., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo tipa vtorogo roda”, DAN, 88:2 (1953), 197–200 | MR | Zbl

[9] Sokhadze R. I., “O pervoi kraevoi zadache dlya uravneniya smeshannogo tipa v pryamougolnike”, Differents. uravneniya, 19:1 (1983), 127–133 | MR

[10] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 45–53 | Zbl

[11] Khairullin R. S., “K zadache Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda s silnym vyrozhdeniem”, Differents. uravneniya, 49:4 (2013), 528–534 | Zbl

[12] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[13] Khairullin R. S., “O suschestvovanii resheniya zadachi Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda”, Differents. uravneniya, 53:5 (2017), 684–692 | Zbl

[14] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl

[15] Smirnov M. M., Uravneniya smeshanngo tipa, Nauka, M., 1970

[16] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[17] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014

[18] Sabitova Yu. K., “Kraevaya zadacha s nelokalnym integralnym usloviem dlya uravnenii smeshannogo tipa s vyrozhdeniem na perekhodnoi linii”, Matem. zametki, 98:3 (2015), 393–406 | MR | Zbl

[19] Sabitova Yu. K., “Nelokalnye nachalno-granichnye zadachi dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2009, no. 12, 49–58 | Zbl

[20] Sabitova Yu. K., “Kriterii edinstvennosti resheniya nelokalnoi zadachi dlya vyrozhdayuschegosya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Differents. uravneniya, 46:8 (2010), 1205–1208 | MR | Zbl

[21] Ilin V. A., “O suschestvovanii privedennoi sistemy sobstvennykh i prisoedinennykh funktsii u nesamosopryazhennogo obyknovennogo differentsialnogo operatora”, Tr. Matem. in-ta im. V.A. Steklova, 142, 1976, 148–155 | Zbl

[22] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl

[23] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. RAN, 77:5 (1951), 11–14 | Zbl

[24] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[25] Trikomi F., Differentsialnye uravneniya, In. lit., M., 1962

[26] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966

[27] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918

[28] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR

[29] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966

[30] Sabitov K. B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013