Construction of multivariate probability distributions with fully reproducible conditional quantiles
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 29-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

It's known that when a multivariate probability distribution has a «big» conditional quantile that is fully reproducible when narrowed to uni-variate quantiles, then the respective quantile differential equation is completely integrable. Yet the converse is not true in general. In this paper, we show that, provided that certain conditions are satisfied, from the given completely integrable quantile equation, one can construct a multivariate distribution with a fully reproducible «big» conditional quantile. The constructed probability distribution may differ from the original distribution. We will also give a generalization of this result that suggests a method of shifting from a $(n-1)$-dimensional distribution satisfying certain conditions to an $n$-dimensional distribution with a fully reproducible «big» conditional quantile.
Keywords: conditional quantile reproducibility, quantile differential equation
Mots-clés : Pfaffian equation.
@article{IVM_2020_11_a2,
     author = {L. E. Melkumova},
     title = {Construction of multivariate probability distributions with fully reproducible conditional quantiles},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--45},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a2/}
}
TY  - JOUR
AU  - L. E. Melkumova
TI  - Construction of multivariate probability distributions with fully reproducible conditional quantiles
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 29
EP  - 45
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a2/
LA  - ru
ID  - IVM_2020_11_a2
ER  - 
%0 Journal Article
%A L. E. Melkumova
%T Construction of multivariate probability distributions with fully reproducible conditional quantiles
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 29-45
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a2/
%G ru
%F IVM_2020_11_a2
L. E. Melkumova. Construction of multivariate probability distributions with fully reproducible conditional quantiles. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 29-45. http://geodesic.mathdoc.fr/item/IVM_2020_11_a2/

[1] Shatskikh S. Ya., Komlev A. N., “Uslovnye raspredeleniya veroyatnostei, kak preobrazovaniya nezavisimosti sluchainykh velichin”, Vestn. Samarsk. gos. un-ta. Estestvennonauchn. Ser., 6:56 (2007), 204–222 | Zbl

[2] Shatskikh S. Ya., “Neobkhodimoe uslovie vosproizvodimosti uslovnykh kvantilei mnogomernykh veroyatnostnykh raspredelenii”, Izv. RAEN, Ser. MMMIU, 4:4 (2000), 67–72

[3] Orlova I. S., Shatskikh S. Ya., “Differentsialnye uravneniya Pfaffa dlya uslovnykh kvantilei mnogomernykh veroyatnostnykh raspredelenii”, Vestn. Samarsk. gos. un-ta. Estestvennonauchn. Ser., 2:76 (2010), 32–47

[4] Shatskikh S. Ya., Orlova I. S., Melkumova L. E., “Kvantilnye mnogomernye modeli regressii, osnovannye na differentsialnykh uravneniyakh Pfaffa”, Izv. RAEN, Ser. MMMIU, 3:4 (2011), 14–109 | MR

[5] Shatskikh S. Ya., “Ob odnom variante preobrazovaniya nezavisimosti”, Mera i integral, Samara, 1995, 99–112

[6] Melkumova L. E., Shatskikh S. Ya., “Reshenie kvantilnykh differentsialnykh uravnenii Pfaffa pri otsutstvii polnoi integriruemosti”, Vestn. Samarsk. gos. un-ta. Estestvennonauchn. Ser., 3/1:94 (2012), 20–39

[7] Shatskikh S. Ya., Melkumova L. E., “Geometriya uslovnykh kvantilei mnogomernykh veroyatnostnykh raspredelenii”, Tezisy dokl., predstavlennykh na Mezhdunarodn. konf. po stokhasticheskim metodam (Novorossiisk, 27 maya–3 iyunya 2016 g.), Teoriya veroyatn. i ee primeneniya, 61, no. 3, 2016, 617–618 | MR

[8] Shatskikh S. Ya., Melkumova L. E., “Reducing the sample size when estimating conditional quantiles”, CEUR Workshop Proc., 1638, 2016, 769–781

[9] Shatskikh S. Ya., Knutova E. M., “Asimptoticheskie svoistva uslovnykh kvantilei ustoichivogo sfericheski simmetrichnogo raspredeleniya s pokazatelem $\alpha = 2/3$”, Vestn. Samarsk. gos. un-ta. Estestvennonauchn. Ser., 4:10 (1998), 102–119 | Zbl

[10] Knutova E. M., Shatskikh S. Ya., “Asimptoticheskie svoistva uslovnykh kvantilei dlya odnogo klassa simmetricheskikh raspredelenii”, Teor. veroyatn. i ee primeneniya, 51:2 (2006), 374–382 | MR

[11] Melkumova L. E., Shatskikh S. Ya., “Metod maksimalnogo pravdopodobiya v teoreme de Finetti”, Teor. veroyatn. i ee primeneniya, 63:4 (2018), 808–816 | MR

[12] Melkumova L. E., Shatskikh S. Ya., “Vosproizvodimost uslovnykh kvantilei mnogomernykh raspredelenii i uproschennaya konstruktsiya iz parnykh kopul”, Teor. veroyatn. i ee primeneniya (to appear)

[13] Rashevskii P. K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, OGIZ. Gos. izd-vo tekhniko-teoret. lit., M.–L., 1947 | MR

[14] Alekseevskiii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Geometriya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya», 28, M., 1988, 5–289

[15] Schmidt T., “Coping with copulas”, Copulas: From Theory to Applications in Finance, London, 2007, 3–34

[16] Nelsen R. B., An introduction to Copulas, 2-nd ed., Springer, N.Y., 2006 | MR | Zbl

[17] Shiryaev A. N., Veroyatnost, v. 1, 2, 3-e izd., MTsNMO, M., 2007

[18] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Fizmatlit, M., 2009 | MR

[19] Kotz S., Balakrishnan N., Johnson N. L., Continuous multivariate distributions, v. 1, 2-nd ed., Wiley, N.Y., 2000 | MR | Zbl