On the continuability of solutions of autonomous differential systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 15-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Problems about a continuability of solutions of real autonomous systems of equations in total differentials and about a reducibility of such systems to many-dimensional dynamical systems are investigated. The reducibility criterion is proved. Conditions at which realisation the reducible system of exact differential equations has orbits–torus-cylinders, are received. Examples are given. When the received outcomes can be transferred on a complex case is noted.
Keywords:
autonomous system, quite solvable system of the exact equations, continuability of the solutions, many-dimensional dynamical system
Mots-clés : orbit.
Mots-clés : orbit.
@article{IVM_2020_11_a1,
author = {V. V. Amel'kin and V. Yu. Tyshchenko},
title = {On the continuability of solutions of autonomous differential systems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--28},
publisher = {mathdoc},
number = {11},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a1/}
}
TY - JOUR AU - V. V. Amel'kin AU - V. Yu. Tyshchenko TI - On the continuability of solutions of autonomous differential systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 15 EP - 28 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_11_a1/ LA - ru ID - IVM_2020_11_a1 ER -
V. V. Amel'kin; V. Yu. Tyshchenko. On the continuability of solutions of autonomous differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 15-28. http://geodesic.mathdoc.fr/item/IVM_2020_11_a1/