Direct and inverse problems for the simple layer logarithmic potential
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of Cauchy-type integrals, a new derivation of integral equations for solving logarithmic potential problems is given. The inverse problem is analyzed with two star-shaped solutions containing a smaller number of parameters than in the more difficult similar examples of I. M. Rapoport. The criterion of conversion to the identical constant of the internal potential of a simple layer is proved.
Keywords: logarithmic potential of a simple layer, convexity and star-like conditions, Cauchy-type integral.
@article{IVM_2020_11_a0,
     author = {N. R. Abubakirov and L. A. Aksent'ev},
     title = {Direct and inverse problems for the simple layer logarithmic potential},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a0/}
}
TY  - JOUR
AU  - N. R. Abubakirov
AU  - L. A. Aksent'ev
TI  - Direct and inverse problems for the simple layer logarithmic potential
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 14
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_11_a0/
LA  - ru
ID  - IVM_2020_11_a0
ER  - 
%0 Journal Article
%A N. R. Abubakirov
%A L. A. Aksent'ev
%T Direct and inverse problems for the simple layer logarithmic potential
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-14
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_11_a0/
%G ru
%F IVM_2020_11_a0
N. R. Abubakirov; L. A. Aksent'ev. Direct and inverse problems for the simple layer logarithmic potential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2020_11_a0/

[1] Abubakirov N. R., Aksentev L. A., “O konechnykh resheniyakh obratnoi zadachi logarifmicheskogo potentsiala”, Izv. vuzov. Matem., 2016, no. 10, 65–69 | MR | Zbl

[2] Abubakirov N. R., Aksentev L. A., “Classes of finite solutions to the inverse problem of the logarithmic potential”, Lobachevskii J. Math., 39 (2018), 151–160 | DOI | MR | Zbl

[3] Abubakirov N. R., Aksentev L. A., “O pryamykh i obratnykh zadachakh logarifmicheskogo potentsiala s konechnym chislom parametrov”, Izv. vuzov. Matem., 2018, no. 8, 75–82 | MR | Zbl

[4] Abubakirov N. R., Aksentev L. A., “On Capabilities of Schwarz Function in the Problems of Logarithmic Potential”, Lobachevskii J. Math., 40:8 (2019), 1146–1156 | DOI | MR | Zbl

[5] Rapoport I. M., “Ob odnoi zadache teorii potentsiala”, Ukr. matem. zhurn., 2:2 (1950), 48–55 | MR | Zbl

[6] Ivanov V. K., Izbrannye nauchnye trudy. Matematika, Fizmatlit, M., 2008 | MR

[7] Prilepko A. I., Cherednichenko V. G., “Ob odnom klasse obratnykh kraevykh zadach dlya analiticheskikh funktsii”, Differents. uravneniya, 17:10 (1981), 1900–1907 | MR | Zbl

[8] Ponomarev S. P., “O logarifmicheskom potentsiale, opredelyaemom krivoi Van Kokha”, SMZh, 50:5 (2009), 1137–1147 | MR | Zbl

[9] Zhdanov M. S., Analogi integrala tipa Koshi v teorii geofizicheskikh polei, Nauka, M., 1984 | MR

[10] Tsirulskii A. V., Funktsii kompleksnogo peremennogo v teorii i metodakh potentsialnykh geofizicheskikh polei, UrO AN SSSR, Sverdlovsk, 1990

[11] Mikheeva A. A., “Integralnoe uravnenie obratnoi zadachi logarifmicheskogo potentsiala prostogo sloya”, Uchen. zap. Uralsk. gos. un-ta, 1960, no. 23, 10–14

[12] Ivanov V. K., Chudinova A. A., “Ob odnom sposobe nakhozhdeniya garmonicheskikh momentov vozmuschayuschikh mass”, Izv. AN SSSR, Fizika Zemli, 1966, no. 3, 55–62

[13] Chudinova A. A., “Obratnaya zadacha potentsiala prostogo sloya dlya tela, blizkogo dannomu”, Izv. vuzov. Matem., 1965, no. 5, 140–150 | MR | Zbl

[14] Chudinova A. A., “Obratnaya zadacha elektrorazvedki”, Izv. vuzov. Matem., 1965, no. 6, 150–155 | Zbl

[15] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[16] Davis Ph.J., The Schwarz function and its applications, Carus Math. Monographs, 17, 1974 | DOI | MR | Zbl

[17] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred, Kazan, 2009

[18] Ivanov V. K., “Integralnoe uravnenie obratnoi zadachi logarifmicheskogo potentsiala”, DAN SSSR, 105:3 (1955), 409–411 | Zbl

[19] Ivanov V. K., “O razreshimosti obratnoi zadachi logarifmicheskogo potentsiala v konechnom vide”, DAN SSSR, 106:4 (1956), 598–599 | Zbl