On stability of one-dimensional movement of viscous material
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional movement of tensioned viscous material stream is considered. Applying the laws of a mass and motion quantity conservation it is shown, that the stationary flow is characterised by exponential decrease of stream width and corresponding increase of stream velocity. Equations for perturbations of station variables are derived, which depend on the defining parameter. This parameter characterises the combined influence of viscosity, density, initial velocity and length of the considered interval. For small parameter values dynamic stability of one-dimensional material motion is established.
Keywords: moving material, viscosity, stability.
@article{IVM_2020_10_a7,
     author = {N. V. Banichuk and S. Yu. Ivanova and V. S. Afanas'ev},
     title = {On stability of one-dimensional movement of viscous material},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--90},
     publisher = {mathdoc},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_10_a7/}
}
TY  - JOUR
AU  - N. V. Banichuk
AU  - S. Yu. Ivanova
AU  - V. S. Afanas'ev
TI  - On stability of one-dimensional movement of viscous material
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 86
EP  - 90
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_10_a7/
LA  - ru
ID  - IVM_2020_10_a7
ER  - 
%0 Journal Article
%A N. V. Banichuk
%A S. Yu. Ivanova
%A V. S. Afanas'ev
%T On stability of one-dimensional movement of viscous material
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 86-90
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_10_a7/
%G ru
%F IVM_2020_10_a7
N. V. Banichuk; S. Yu. Ivanova; V. S. Afanas'ev. On stability of one-dimensional movement of viscous material. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 86-90. http://geodesic.mathdoc.fr/item/IVM_2020_10_a7/

[1] Sack R. A., “Transvers oscillations in travelling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI

[2] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, ASME J. Appl. Mech., 25:3 (1958), 347–348 | Zbl

[3] Mote C. D., “Dynamic stability of an axially moving band”, J. Franklin Inst., 285:5 (1968), 329–346 | DOI | Zbl

[4] Simpson A., “Transvers modes and frequencies of beams translating between fixed end supports”, J. Mech. Engineering Sci., 15 (1973), 159–164 | DOI

[5] Lin C. C., Mote C. D., “Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading”, ASME J. Appl. Mech., 62 (1995), 772–779 | DOI | Zbl

[6] Lin C. C., “Stability and vibration characteristics of axially moving plates”, Int. J. Solid. Struc., 34:24 (1997), 3179–3190 | DOI | Zbl

[7] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “On the instability of an axially moving elastic plate”, Int. J. Solid. Struc., 47:1 (2010), 91–99 | DOI | Zbl

[8] Banichuk N.,Jeronen J., Neittaanmäki P., Tuovinen T., “Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid”, J. Fluid. Struc., 26:2 (2010), 274–291 | DOI

[9] Marynowski K., Kapitaniak T., “Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web”, Int. J. Non-Linear Mech., 37:7 (2002), 1147–1161 | DOI | Zbl

[10] Banichuk N. V., Ivanova S. Yu., “Optimalnoe podavlenie vozmuschenii dvizhuschikhsya termouprugikh panelei”, DAN, 478:1 (2018), 29–33 | MR

[11] Marynowski K., Dynamics of the Axially Moving Orthotropic Web, Lect. notes appl. computational mech., 38, Springer, Germany, 2008 | DOI | Zbl

[12] Marynowski K., Kapitaniak T., “Dynamics of axially moving continua”, Int. J. Mech. Sci., 81 (2014), 26–41 | DOI

[13] Banichuk N., Jeronen J., Neittaamäki P., Saksa T., Tuovinen T., Mechanics of Moving Materials, Solid Mech. and Its Appl., 207, Springer Internat. Publ., Switzerland, 2014 | DOI | MR | Zbl

[14] Banichuk N. V., Barsuk A. A., Jeronen J., Tuovinen T., Neittaanmaki P., Stability of Axially Moving Materials, Solid Mech. and Its Appl., 259, Springer Nature, Switzerland, 2020 | DOI | MR | Zbl