Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 73-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the possibility of using the inverse scattering problem method to integrate the mKdV equation with a self-consistent source in the class of finite density functions in the case of moving simple eigenvalues of the corresponding spectral problem is shown.
Keywords: inverse scattering problem method, modified Korteweg-de Vries equation (mKdV), Dirac operator, eigenvalue, eigenfunction, scattering data, class of functions having finite density.
Mots-clés : Jost solution
@article{IVM_2020_10_a6,
     author = {K. A. Mamedov},
     title = {Integration of {mKdV} equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--85},
     publisher = {mathdoc},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_10_a6/}
}
TY  - JOUR
AU  - K. A. Mamedov
TI  - Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 73
EP  - 85
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_10_a6/
LA  - ru
ID  - IVM_2020_10_a6
ER  - 
%0 Journal Article
%A K. A. Mamedov
%T Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 73-85
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_10_a6/
%G ru
%F IVM_2020_10_a6
K. A. Mamedov. Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 73-85. http://geodesic.mathdoc.fr/item/IVM_2020_10_a6/

[1] Wadati M., “The exact solution of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 32 (1972), 1681 | DOI | MR

[2] Gardner S. S., Green I. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[3] Gasymov M. G., Levitan B. M., “Obratnaya zadacha dlya sistemy Diraka”, DAN SSSR, 167:5 (1966), 967–970 | Zbl

[4] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinoi srede”, ZhETF, 61:1 (1971), 118–134 | MR

[5] Frolov I. S., “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, DAN SSSR, 207:1 (1972), 44–47 | Zbl

[6] Nizhnik L. P., Fam Loi Vu, “Obratnaya zadacha rasseyaniya na poluosi s nesamosopryazhennoi potentsialnoi matritsei”, Ukr. matem. zhurn., 26:4 (1974), 469–486

[7] Khasanov A. B., “Ob obratnoi zadache teorii rasseyaniya dlya sistemy dvukh nesamosopryazhennykh differentsialnykh uravnenii pervogo poryadka”, DAN SSSR, 277:3 (1984), 559–562 | MR | Zbl

[8] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[9] Ablowitz M., Kaup D., Newell A., Segur H., “The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[10] Zakharov V. E., Takhtadzhyan L. A., Faddeev L. D., “Polnoe opisanie reshenii «sin-Gordon» uravneniya”, DAN SSSR, 219:6 (1974), 1334–1337 | Zbl

[11] Mel'nikov V. K., “Exact solutions of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 128 (1988), 488–4924 | DOI | MR

[12] Mel'nikov V. K., “Creation and annihilation of solitons in the system described by the KdV equation with a self-consistent source”, Inverse Probl., 6 (1990), 809–823 | DOI | MR | Zbl

[13] Mel'nikov V. K., “Integration of the nonlinear Schrodinger equation with a source”, Inverse Probl., 8 (1992), 133–147 | DOI | MR | Zbl

[14] Urazboev G. U., Khasanov A. B., “Integrirovanie uravneniya Kortevega-de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa «stupenki»”, Teor. i matem. fizika, 129:1 (2001), 38–54 | MR

[15] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J.Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl

[16] Yakhshimuratov A. B., Khasanov M. M., “Integrirovanie modifitsirovannogo uravneniya Kortevega-de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Differents. uravneniya, 50:4 (2014), 536–543 | MR | Zbl

[17] Romanova N. N., “N-solitonnoe reshenie “na pedestale” modifitsirovannogo uravneniya Kortevega-de Friza”, Teor. i matem. fizika, 39:2 (1979), 205–215