Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_10_a3, author = {B. I. Islomov and O. Kh. Abdullaev}, title = {Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with {Caputo} and {Erdelyi-Kober} operators of fractional order}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--46}, publisher = {mathdoc}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/} }
TY - JOUR AU - B. I. Islomov AU - O. Kh. Abdullaev TI - Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 33 EP - 46 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/ LA - ru ID - IVM_2020_10_a3 ER -
%0 Journal Article %A B. I. Islomov %A O. Kh. Abdullaev %T Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 33-46 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/ %G ru %F IVM_2020_10_a3
B. I. Islomov; O. Kh. Abdullaev. Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 33-46. http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/
[1] Podlubny I., Fractional Differential Equations, Academic Press, N. Y., 1999 | MR | Zbl
[2] Diethelm K., Freed A. D., “On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity”, Scientific Computing in Chemical Engineering, v. II, Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, 217–224 | DOI
[3] Lundstrom B. N., Higgs M. H., Spain W. J., Fairhall A. L., “Fractional differentiation by neocortical pyramidal neurons”, Nat. Neurosci., 11 (2008), 1335–1342 | DOI
[4] Glockle W. G., Nonnenmacher T. F., “A fractional calculus approach of self-similar protein dynamics”, Biophys. J., 68 (1995), 46–53 | DOI
[5] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl
[6] Mainardi F., “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 291–348 | DOI | MR
[7] Kirchner J. W., Feng X., Neal C., “Fractal streamchemistry and its implications for contaminant transport in catchments”, Nature, 403 (2000), 524–526 | DOI
[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl
[9] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, N.Y., 1993 | MR | Zbl
[10] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA, 1993 | MR
[11] Nakhushev A. M., Drobnye ischisleniya i ego primeneniya, Fizmatlit, M., 2003
[12] Pskhu A. V., “Solution of a boundary value problem for a fractional partial differential equation”, Diff. Equat., 39:8 (2003), 1150–1158 | DOI | MR | Zbl
[13] Pskhu A. V., “Solution of boundary value problems fractional diffusion equation by the Green function method”, Diff. Equat., 39:10 (2003), 1509–1513 | DOI | MR | Zbl
[14] Kilbas A. A., Repin O. A.,, “Analogue of the Bitsadze$-$Samarskiy problem for an equation of mixed type with a fractional derivative”, Diff. Equat., 39:5 (2003), 638–719 | DOI | MR
[15] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[16] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. matem., 73:2 (2009), 141–182 | MR | Zbl
[17] Kilbas A. A., Repin O. A., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fractional Calculus and Appl. Anal., 13:1 (2010), 69–84 | MR | Zbl
[18] Berdyshev A. S., Kadirkulov B. J., Nieto J. J., “Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives”, Complex Variables and Elliptic Equat., 59:5 (2014) | DOI | MR | Zbl
[19] Berdyshev A. S., Cabada A., Karimov E. T., “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator”, Nonlinear Anal., Theory Methods Appl., 75:6 (2012), 3268–3273 | DOI | MR | Zbl
[20] Nakhushev A. M., The loaded equations and their applications, Nauka, M., 2012
[21] Abdullaev O.Kh., “Non-local problem for the loaded mixed type equations with integral operator”, Vest. Sam. Gos. tech. univer., 20:2 (2016), 220–240 | MR
[22] Sadarangani K. Abdullaev O.Kh., “A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative”, Advances Diff. Equat., 2016, AIDE-D-16-00217R3 | MR
[23] Salakhitdinov M. S., Karimov E. T., “On a nonlocal problem with gluing condition of integral form for parabolic-hyperbolic equation with Caputo operator”, Reports Academy Sci. Republ. Uzbek. (DAN RUz), 4 (2014), 6–9
[24] Abdullaev O.Kh., “Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order”, Uzbek Math. J., 3 (2019), 4–18 | DOI | MR
[25] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl
[26] Sabitov K. B., “Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi”, Izv. vuzov. Matem., 2015, no. 6, 31–42 | Zbl
[27] Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya Lavrenteva-Bitsadze”, Vestn. SAMGU. Estestv.-nauch. ser., 6:80 (2010), 39–47
[28] Smirnov M. M., Mixed type equations, Nauka, M., 2000 | MR