Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work devoted to uniqueness and existence of solution of the local and non-local problems with integral gluing condition for the loaded parabolic-hyperbolic type equation involving Caputo derivatives which trace of solution involved into the Erdelyi-Kober integral operator. The uniqueness of solution is proved using by the method of integral energy. The existence of solution was proved by the method of integral equations.
Keywords: loaded equation, parabolic-hyperbolic type, Caputo derivatives, integral gluing condition, uniqueness and existence of solution, integral equations.
@article{IVM_2020_10_a3,
     author = {B. I. Islomov and O. Kh. Abdullaev},
     title = {Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with {Caputo} and {Erdelyi-Kober} operators of fractional order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--46},
     publisher = {mathdoc},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - O. Kh. Abdullaev
TI  - Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 33
EP  - 46
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/
LA  - ru
ID  - IVM_2020_10_a3
ER  - 
%0 Journal Article
%A B. I. Islomov
%A O. Kh. Abdullaev
%T Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 33-46
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/
%G ru
%F IVM_2020_10_a3
B. I. Islomov; O. Kh. Abdullaev. Gellerstedt type problem for the loaded parabolic-hyperbolic type equation with Caputo and Erdelyi-Kober operators of fractional order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 33-46. http://geodesic.mathdoc.fr/item/IVM_2020_10_a3/

[1] Podlubny I., Fractional Differential Equations, Academic Press, N. Y., 1999 | MR | Zbl

[2] Diethelm K., Freed A. D., “On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity”, Scientific Computing in Chemical Engineering, v. II, Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 1999, 217–224 | DOI

[3] Lundstrom B. N., Higgs M. H., Spain W. J., Fairhall A. L., “Fractional differentiation by neocortical pyramidal neurons”, Nat. Neurosci., 11 (2008), 1335–1342 | DOI

[4] Glockle W. G., Nonnenmacher T. F., “A fractional calculus approach of self-similar protein dynamics”, Biophys. J., 68 (1995), 46–53 | DOI

[5] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[6] Mainardi F., “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997, 291–348 | DOI | MR

[7] Kirchner J. W., Feng X., Neal C., “Fractal streamchemistry and its implications for contaminant transport in catchments”, Nature, 403 (2000), 524–526 | DOI

[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl

[9] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, N.Y., 1993 | MR | Zbl

[10] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Longhorne, PA, 1993 | MR

[11] Nakhushev A. M., Drobnye ischisleniya i ego primeneniya, Fizmatlit, M., 2003

[12] Pskhu A. V., “Solution of a boundary value problem for a fractional partial differential equation”, Diff. Equat., 39:8 (2003), 1150–1158 | DOI | MR | Zbl

[13] Pskhu A. V., “Solution of boundary value problems fractional diffusion equation by the Green function method”, Diff. Equat., 39:10 (2003), 1509–1513 | DOI | MR | Zbl

[14] Kilbas A. A., Repin O. A.,, “Analogue of the Bitsadze$-$Samarskiy problem for an equation of mixed type with a fractional derivative”, Diff. Equat., 39:5 (2003), 638–719 | DOI | MR

[15] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[16] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. matem., 73:2 (2009), 141–182 | MR | Zbl

[17] Kilbas A. A., Repin O. A., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fractional Calculus and Appl. Anal., 13:1 (2010), 69–84 | MR | Zbl

[18] Berdyshev A. S., Kadirkulov B. J., Nieto J. J., “Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives”, Complex Variables and Elliptic Equat., 59:5 (2014) | DOI | MR | Zbl

[19] Berdyshev A. S., Cabada A., Karimov E. T., “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator”, Nonlinear Anal., Theory Methods Appl., 75:6 (2012), 3268–3273 | DOI | MR | Zbl

[20] Nakhushev A. M., The loaded equations and their applications, Nauka, M., 2012

[21] Abdullaev O.Kh., “Non-local problem for the loaded mixed type equations with integral operator”, Vest. Sam. Gos. tech. univer., 20:2 (2016), 220–240 | MR

[22] Sadarangani K. Abdullaev O.Kh., “A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative”, Advances Diff. Equat., 2016, AIDE-D-16-00217R3 | MR

[23] Salakhitdinov M. S., Karimov E. T., “On a nonlocal problem with gluing condition of integral form for parabolic-hyperbolic equation with Caputo operator”, Reports Academy Sci. Republ. Uzbek. (DAN RUz), 4 (2014), 6–9

[24] Abdullaev O.Kh., “Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order”, Uzbek Math. J., 3 (2019), 4–18 | DOI | MR

[25] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl

[26] Sabitov K. B., “Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi”, Izv. vuzov. Matem., 2015, no. 6, 31–42 | Zbl

[27] Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya Lavrenteva-Bitsadze”, Vestn. SAMGU. Estestv.-nauch. ser., 6:80 (2010), 39–47

[28] Smirnov M. M., Mixed type equations, Nauka, M., 2000 | MR