A comparision of the V- and S-Dini tests. A counterexamples on the symmetrical Dini tests by a type Haar and Walsh systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 73-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a both conditions are important for symmetrical Dini's test by Price's and generalized Haar's systems; an execution of one of them's cannot guarantee a convergence of Fourier series for any majorants. An accordingly examples are constructived.
Keywords: abelian group, Vilenkin's group, characters system, Price's systems, generalized Haar's systems, Dirichlet's kernels, Dini's test.
@article{IVM_2019_9_a6,
     author = {V. I. Shcherbakov},
     title = {A comparision of the {V-} and {S-Dini} tests. {A} counterexamples on the symmetrical {Dini} tests by a type {Haar} and {Walsh} systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--95},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a6/}
}
TY  - JOUR
AU  - V. I. Shcherbakov
TI  - A comparision of the V- and S-Dini tests. A counterexamples on the symmetrical Dini tests by a type Haar and Walsh systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 73
EP  - 95
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a6/
LA  - ru
ID  - IVM_2019_9_a6
ER  - 
%0 Journal Article
%A V. I. Shcherbakov
%T A comparision of the V- and S-Dini tests. A counterexamples on the symmetrical Dini tests by a type Haar and Walsh systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 73-95
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a6/
%G ru
%F IVM_2019_9_a6
V. I. Shcherbakov. A comparision of the V- and S-Dini tests. A counterexamples on the symmetrical Dini tests by a type Haar and Walsh systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 73-95. http://geodesic.mathdoc.fr/item/IVM_2019_9_a6/

[1] Vilenkin N. Ya., “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR, Ser. matem., 11:4 (1947), 363–400 | Zbl

[2] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR

[3] Monna J. L., Analysys non-Archimedence, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[4] Khrennikov A. Yu., Shelkovich V. M., Sovremennyi $p$-adicheskii analiz i matematicheskaya fizika. Teoriya i prilozheniya, Fizmatgiz, M., 2012

[5] Scherbakov V. I., “O potochechnoi skhodimosti ryadov Fure po multiplikativnym sistemam”, Vestn. MGU Ser.: Matem., mekhanika, 1983, no. 2, 37–42

[6] Scherbakov V. I., “Mazhoranty yader Dirikhle i potochechnye priznaki Dini po obobschennym sistemam Khaara”, Matem. zametki,, 101:3 (2017), 446–473 | DOI | MR

[7] Scherbakov V. I., “Priznak Dini–Lipshitsa dlya obobschennykh sistem Khaara”, Izv. Saratovsk. un-ta, Ser.: Matem., mekhan., informatika, 16:4 (2016), 435–448 | MR

[8] Golubov B. I., “Ob odnom klasse polnykh ortonormalnykh sistem”, Sib. matem. zhurn., 9:2 (1968), 297–314 | MR | Zbl

[9] Scherbakov V. I., “Raskhodimost ryadov Fure po obobschennym sistemam Khaara v tochkakh nepreryvnosti funktsii”, Izv. vuzov. Matem., 2016, no. 1, 49–68

[10] Price J. J., Certain groups of orthonormal step functions, 9:3 (1957), 417–425 | MR

[11] Chrestenson H. E., “A class of generalized Walsh's functions”, Pacific J. Math., 5:1 (1955), 17–31 | DOI | MR | Zbl

[12] Walsh J. L., “A closed set of normal orthogonal functions”, Amer. J. Math., 45:1 (1923), 5–24 | DOI | MR | Zbl

[13] Paley R. E. A. C., “A remarkable series of orthonormal functions”, Proc. London Math. Soc., 36 (1932), 241–264 | DOI | MR

[14] Rademacher H., “Enige Sätze über Reihen von allgemeinen Orthogonalfunctionen”, Math. Ann., 87:1–2 (1922), 112–130 | DOI | MR

[15] Kachmazh S., Shteingauz G., “Dopolneniya N. Ya. Vilenkina”, Teoriya ortogonalnykh ryadov, § 1, p. 6, Fizmatgiz, M., 1958, 475–479

[16] Kaczmashz S., Steinhaus H., Theorie des Orthogonalreichen, Warszawa–Wroclav, 1936

[17] Golubov B. I., Rubinshtein A. I., “Ob odnom klasse sistem skhodimosti”, Matem. sb., 71:1 (1966), 96–115 | Zbl

[18] Vlasova E. A., Ryady po obobschennym sistemam Khaara, avtoreferat diss. uch. stepeni kand. fiz.-matem. nauk, M., 1987

[19] Vlasova E. A., “Convergence of series with respect to generalized Haar systems”, Anal. Math., 13:4 (1987), 339–360 | DOI | MR | Zbl

[20] Haar A., “Zur Theorie der Orthogonalischen Functionsysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[21] Lukomskii S. F., “O ryadakh Khaara na kompaktnoi nulmernoi gruppe”, Izv. Saratovsk. un-ta. Ser.: Matem., mekhan., informatika, 9:1 (2009), 24–29 | Zbl

[22] Komissarova N. E., Funktsii Lebega po sistemam Khaara na nulmernykh kompaktnykh gruppakh, 12:3 (2012), 30–36 | Zbl

[23] Berdnikov G. S., “Grafy s konturami v kratnomasshtabnom analize na gruppakh Vilenkina”, Izv. Saratovsk. un-ta, Ser.: Matem., mekhan., informatika, 16:4 (2016), 377–388

[24] Fine N. J., “On the Walsh function”, Trans. Amer. Math. Soc., 69:3 (1949), 372–414 | DOI | MR