On fractal constructions on curvilinear three-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider configurations of lines of curvilinear three-web that can be inscribed in a triangle formed by the lines of this web. In case the inscribed configuration is triangulating, it generates a fractal in each such triangle. This allows us to associate with smooth function of two variables a certain fractal that generalizes the well-known Sierpiński triangle. We introduce the concept of a regular fractal and prove that a regular fractal is obtained only for a regular three-web (generalization of the basic theorem on hexagonal three-webs). We also find the fractal dimensions of some regular fractals and formulate problems related to fractal dimension.
Keywords: three-web, three-web configuration, inscribed configuration, triangulating configuration, fractal associated with a three-web, generalized Sierpińsky triangle.
@article{IVM_2019_9_a5,
     author = {A.M. Shelekhov},
     title = {On fractal constructions on curvilinear three-web},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--72},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/}
}
TY  - JOUR
AU  - A.M. Shelekhov
TI  - On fractal constructions on curvilinear three-web
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 63
EP  - 72
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/
LA  - ru
ID  - IVM_2019_9_a5
ER  - 
%0 Journal Article
%A A.M. Shelekhov
%T On fractal constructions on curvilinear three-web
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 63-72
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/
%G ru
%F IVM_2019_9_a5
A.M. Shelekhov. On fractal constructions on curvilinear three-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 63-72. http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/

[1] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Tvers. gos. un-t, Tver, 2013

[2] Mandelbrot B. B., The fractal geometry of nature, W. H. Freeman and Co., San Francisco, 1982 | MR | Zbl

[3] Kenneth Falconer., Fractal geometry: mathematical foundations and applications, John Wiley and Sons, New York, 1990 | MR | Zbl