On fractal constructions on curvilinear three-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 63-72
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider configurations of lines of curvilinear three-web that can be inscribed in a triangle formed by the lines of this web. In case the inscribed configuration is triangulating, it generates a fractal in each such triangle. This allows us to associate with smooth function of two variables a certain fractal that generalizes the well-known Sierpiński triangle. We introduce the concept of a regular fractal and prove that a regular fractal is obtained only for a regular three-web (generalization of the basic theorem on hexagonal three-webs). We also find the fractal dimensions of some regular fractals and formulate problems related to fractal dimension.
Keywords:
three-web, three-web configuration, inscribed configuration, triangulating configuration, fractal associated with a three-web, generalized Sierpińsky triangle.
@article{IVM_2019_9_a5,
author = {A.M. Shelekhov},
title = {On fractal constructions on curvilinear three-web},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {63--72},
year = {2019},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/}
}
A.M. Shelekhov. On fractal constructions on curvilinear three-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 63-72. http://geodesic.mathdoc.fr/item/IVM_2019_9_a5/
[1] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Tvers. gos. un-t, Tver, 2013
[2] Mandelbrot B. B., The fractal geometry of nature, W. H. Freeman and Co., San Francisco, 1982 | MR | Zbl
[3] Kenneth Falconer., Fractal geometry: mathematical foundations and applications, John Wiley and Sons, New York, 1990 | MR | Zbl