Integral equations of curvilinear convoltion type with hypergeometric function in a kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of integral equations of first kind over the circumference in the complex plane. The kernels of the equations contain a Gaussian hypergeometric function and depend on the arguments ratio. This class includes such specific cases as the equations with power and logarithmic kernels. To set the Noetherian property of equations correctly the method of operator normalization with a non–closed image is applied. The space of the right–hand sides of equations is described as the space of fractional integrals of curvilinear convolution type. The solutions of equations in explicit form are obtained as a result of consequent solving characteristical singular equations with a Cauchy kernel and inversion of a curvilinear convolution operator by means of Laurent transform of the functions defined on the circumference.
Keywords: operator of curvilinear convolution with a Gaussian function in a kernel, inversion of a curvilinear convolution operator, Noetherian property of an integral equation.
Mots-clés : Laurent transform
@article{IVM_2019_9_a4,
     author = {A. I. Peschanskii},
     title = {Integral equations of curvilinear convoltion type with hypergeometric function in a kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--62},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a4/}
}
TY  - JOUR
AU  - A. I. Peschanskii
TI  - Integral equations of curvilinear convoltion type with hypergeometric function in a kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 50
EP  - 62
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a4/
LA  - ru
ID  - IVM_2019_9_a4
ER  - 
%0 Journal Article
%A A. I. Peschanskii
%T Integral equations of curvilinear convoltion type with hypergeometric function in a kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 50-62
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a4/
%G ru
%F IVM_2019_9_a4
A. I. Peschanskii. Integral equations of curvilinear convoltion type with hypergeometric function in a kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 50-62. http://geodesic.mathdoc.fr/item/IVM_2019_9_a4/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[3] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978

[4] Polyanin A. D., Manzhirov A. V., Singulyarnye integralnye uravneniya, v. 1, 2, Yurait, M., 2018

[5] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[6] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Gordon and Breach Sci., 1993 | MR | Zbl

[7] Pleschinskii N. B., Singulyarnye integralnye uravneniya so slozhnoi osobennostyu v yadre, Kazansk. un-t, Kazan, 2018

[8] Peters A. S., “Some integral equations related to Abel's equation and the Hilbert transform”, Comm. Pure Appl. Math., 22:4 (1969), 539–560 | DOI | MR | Zbl

[9] Chumakov V. F., Vasilev I. L., “Integralnye uravneniya tipa Abelya na zamknutom konture”, Vestn. Belorussk. un-ta. Ser. 1, 1980, no. 2, 40–44

[10] Saks R. S., Kraevye zadachi dlya ellipticheskikh sistem differentsialnykh uravnenii, Izd-vo NGU, Novosibirsk, 1975

[11] Tovmasyan N. E., “K teorii singulyarnykh integralnykh uravnenii”, Differents. uravneniya, 3:1 (1967), 69–80 | Zbl

[12] Khaikin M. I., “O regulyarizatsii operatorov s nezamknutoi oblastyu znachenii”, Izv. vuzov. Matem., 1970, no. 8, 118–123 | MR

[13] Peschanskii A. I., Cherskii Yu. I., “Integralnoe uravnenie s krivolineinymi svertkami na zamknutom konture”, Ukr. matem. zhurn., 36:3 (1984), 335–340 | Zbl

[14] Biberbakh L., Analiticheskoe prodolzhenie, Mir, M., 1967

[15] Smirnov V. I., Lebedev A. N., Konstruktivnaya funktsiya kompleksnogo peremennogo, Nauka, M., 1964

[16] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1967

[17] Peschanskii A. I., “Ob opisanii prostranstva drobnykh integralov tipa krivolineinoi svertki”, Izv. vuzov. Matem., 1989, no. 7, 29–39

[18] Peschanskii A. I., “Ob opisanii prostranstva drobnykh integralov tipa krivolineinoi svertki”, Materialy XXY Mezhdunar. nauch.-tekhn. konf. “Prikl. zadachi matem.” (Sevastopol, 18–22 sentyabrya 2017), Izd-vo SevGU, Sevastopol, 2017, 104–108

[19] Isakhanov R. S., “Differentsialnaya granichnaya zadacha lineinogo sopryazheniya i ee primenenie k teorii integro-differentsialnykh uravnenii”, Soobsch. AN GruzSSR, 20:6 (1958), 659–666 | Zbl

[20] Cherskii Yu. I., “Integralnye uravneniya, svodyaschiesya k dvum zadacham Rimana”, DAN SSSR, 248:4 (1979), 802–805 | Zbl