Fractional modified Hardy and Hardy--Littlewood operators and their commutators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 16-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

For modified fractional Hardy and Hardy–Littlewood operators and its commutators with symbol from a central mean oscillation space we study conditions for its boundedness from one modified Herz space to another. The sharpness of the result concerning commutators of fractional Hardy–Littlewood operator is established.
Keywords: modified Hardy and Hardy–Littlewood operators, commutator, modified Herz space
Mots-clés : $CMO^q$ space.
@article{IVM_2019_9_a1,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Fractional modified {Hardy} and {Hardy--Littlewood} operators and their commutators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--26},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Fractional modified Hardy and Hardy--Littlewood operators and their commutators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 16
EP  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a1/
LA  - ru
ID  - IVM_2019_9_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Fractional modified Hardy and Hardy--Littlewood operators and their commutators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 16-26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a1/
%G ru
%F IVM_2019_9_a1
S. S. Volosivets; B. I. Golubov. Fractional modified Hardy and Hardy--Littlewood operators and their commutators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 16-26. http://geodesic.mathdoc.fr/item/IVM_2019_9_a1/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987

[2] Khardi G. G., Littlvud Dzh.E., Polia G., Neravenstva, IL, M., 1948; 2-е изд., Ком. кн., М., 2006

[3] Andersen K. F., Muckenhoupt B., “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions”, Studia Math., 72:1 (1982), 9–26 | DOI | MR | Zbl

[4] Volosivets S. S., “Tozhdestva tipa Titchmarsha dlya obobschennykh operatorov Khardi i Khardi–Littlvuda”, Izv. Saratovsk. un-ta, Ser. matem., mekhan., informatika, 13:1-2 (2013), 28–33 | Zbl

[5] Golubov B. I., “O dvoichnykh analogakh operatorov Khardi i Khardi–Littlvuda”, Sib. matem. zhurn., 40:6 (1999), 1244–1252

[6] Golubov B. I., “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i $BMO$”, Anal. Math., 26:4 (2000), 287–298 | DOI | MR | Zbl

[7] Volosivets S. S., “On $\mathbf{P}$-adic analogs of Hardy and Hardy–Littlewood operators”, East J. Approx., 11:1 (2005), 57–72 | MR | Zbl

[8] Volosivets S. S., “Modifitsirovannye operatory Khardi i Khardi–Littlvuda i ikh povedenie v razlichnykh prostranstvakh”, Izv. RAN. Ser. matem., 75:1 (2011), 29–52 | DOI | MR | Zbl

[9] Chen Y. Z., Lau K. S., “Some new classes of Hardy spaces”, J. Funct. Anal., 84:2 (1989), 255–278 | DOI | MR | Zbl

[10] Garcia-Cuerva J., “Hardy spaces and Beurling algebras”, J. London Math. Soc., 39:3 (1989), 499–513 | DOI | MR | Zbl

[11] Long S., Wang J., “Commutators of Hardy operators”, J. Math. Anal. Appl., 274:2 (2002), 626–644 | DOI | MR | Zbl

[12] Herz C., “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. Mech., 18:4 (1968), 283–324 | MR

[13] Onneweer C. W., “Generalized Lipschitz spaces and Herz spaces on certain totally disconnected groups”, Martingale theory in harmonic analysis and Banach spaces, Lect. Notes in Math., 939, Springer, Berlin, 1981, 106–121 | DOI | MR

[14] Gao G., Zhong Y., “Some estimates of Hardy operators and their commutators on Morrey–Herz spaces”, J. Math. Ineq., 11:1 (2017), 49–58 | DOI | MR | Zbl