On the boundary value problem for functional differential inclusion of fractional order with common initial condition on a Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem for a functional differential inclusion of fractional order with a general initial condition expressed in the form of an operator inclusion in a Banach space. At the beginning of the article, an introduction is presented in which the relevance of the study is substantiated, then preliminary information from fractional analysis, the theory of measures of noncompactness and condensing mappings, as well as some information from a multivalued analysis are given. In the second subsection we state the problem and its solution on the basis of the theory of condensing multivalued mappings. In the last subsection we give an example of a particular case of the solved problem, in the case of an antiperiodic boundary condition.
Keywords: differential inclusion, the fractional derivative, measure of noncompactness, fixed point, condensing multimap.
@article{IVM_2019_9_a0,
     author = {M. S. Afanasova and G. G. Petrosyan},
     title = {On the boundary value problem for functional differential inclusion of fractional order with common initial condition on a {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a0/}
}
TY  - JOUR
AU  - M. S. Afanasova
AU  - G. G. Petrosyan
TI  - On the boundary value problem for functional differential inclusion of fractional order with common initial condition on a Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a0/
LA  - ru
ID  - IVM_2019_9_a0
ER  - 
%0 Journal Article
%A M. S. Afanasova
%A G. G. Petrosyan
%T On the boundary value problem for functional differential inclusion of fractional order with common initial condition on a Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a0/
%G ru
%F IVM_2019_9_a0
M. S. Afanasova; G. G. Petrosyan. On the boundary value problem for functional differential inclusion of fractional order with common initial condition on a Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2019_9_a0/

[1] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional calculus models and numerical nethods, World Sci. Publ., New York, 2012 | MR

[2] Diethelm K., The analysis of fractional differential equations, Springer-Verlag, Berlin, 2010 | MR | Zbl

[3] Hilfer R., Applications of fractional calculus in physics, World Sci., Singapore, 2000 | MR | Zbl

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl

[5] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999 | MR | Zbl

[6] Samko S. G., Kilbas A. A. and Marichev O. I., Fractional integrals and derivatives. Theory and applications, Gordon and Breach Sci. Publishers, Yverdon, 1993 | MR | Zbl

[7] Zvyagin V. G., “Attractors theory for autonomous systems of hydrodynamics and its application to Bingham model of fluid motion”, Lobachevskii J. Math., 38:4 (2017), 767–777 | DOI | MR | Zbl

[8] Kamenskii M. I., Obukhoskii V. V., Petrosyan G. G., Yao J. C., “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory Appl., 4 (2017), 1–20 | MR

[9] Kamenskii M. I., Obukhoskii V. V., Petrosyan G. G., Yao J. C., “On semilinear fractional order differential inclusions in Banach spaces”, Fixed Point Theory, 18:1 (2018), 269–292 | DOI | MR

[10] Kamenskii M. I., Obukhoskii V. V., Petrosyan G. G., Yao J. C., “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Appl. Anal., 96 (2017), 1–21 | DOI | MR

[11] Obukhovskii V., Yao J.-C., “Some existence results for fractional functional differential equations”, Fixed Point Theory, 11:1 (2010), 85–96 | MR | Zbl

[12] Kamenskii M., Obukhovskii V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, de Gruyter Ser. in Nonlinear Anal. and Appl., Walter de Gruyter, Berlin–New-York, 2001 | MR

[13] Akhmerov R. R., Kamenskii M. I., Potapov A. S., Rodkina A. E., Sadovskii B. N., Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986 | MR

[14] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izdanie 2-e, ispr. i dop., Kn. dom «Librokom», M., 2011

[15] Basova M., Obukhovskii V., Topologicheskie metody v granichnykh zadachakh dlya differentsialnykh vklyuchenii, Lambert AP, Saarbrucken, 2011

[16] Obukhovskii V., Zecca P., “On boundary value problems for degenerate differential inclusions in Banach spaces”, Abstr. Appl. Anal., 13 (2003), 769–784 | DOI | MR | Zbl

[17] Petrosyan G. G., Afanasova M. S., “O zadache Koshi dlya differentsialnogo vklyucheniya drobnogo poryadka s nelineinym granichnym usloviem”, Vestn. VGU. Ser. FM (Voronezh), 1 (2017), 135–151