Lambert function and exact solutions of nonlinear parabolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 13-20
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the diffusion equations with degree type coefficient of diffusion and a nonlinear source. The main attention is paid to the construction of exact solutions expressed via the Lambert function. We prove a series of statements that determine the conditions for the source function that guarantee the existence of exact solutions of a certain type. We give examples of exact solutions of nonlinear diffusion equations (including those equations with polynomial and fractional-rational source functions) to illustrate the obtained results.
Keywords:
equation of nonlinear diffusion, Lambert's function
Mots-clés : exact solutions.
Mots-clés : exact solutions.
@article{IVM_2019_8_a1,
author = {A. A. Kosov and E. I. Semenov},
title = {Lambert function and exact solutions of nonlinear parabolic equations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {13--20},
publisher = {mathdoc},
number = {8},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/}
}
TY - JOUR AU - A. A. Kosov AU - E. I. Semenov TI - Lambert function and exact solutions of nonlinear parabolic equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 13 EP - 20 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/ LA - ru ID - IVM_2019_8_a1 ER -
A. A. Kosov; E. I. Semenov. Lambert function and exact solutions of nonlinear parabolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 13-20. http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/