Lambert function and exact solutions of nonlinear parabolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 13-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the diffusion equations with degree type coefficient of diffusion and a nonlinear source. The main attention is paid to the construction of exact solutions expressed via the Lambert function. We prove a series of statements that determine the conditions for the source function that guarantee the existence of exact solutions of a certain type. We give examples of exact solutions of nonlinear diffusion equations (including those equations with polynomial and fractional-rational source functions) to illustrate the obtained results.
Keywords: equation of nonlinear diffusion, Lambert's function
Mots-clés : exact solutions.
@article{IVM_2019_8_a1,
     author = {A. A. Kosov and E. I. Semenov},
     title = {Lambert function and exact solutions of nonlinear parabolic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--20},
     publisher = {mathdoc},
     number = {8},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
TI  - Lambert function and exact solutions of nonlinear parabolic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 13
EP  - 20
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/
LA  - ru
ID  - IVM_2019_8_a1
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%T Lambert function and exact solutions of nonlinear parabolic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 13-20
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/
%G ru
%F IVM_2019_8_a1
A. A. Kosov; E. I. Semenov. Lambert function and exact solutions of nonlinear parabolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 13-20. http://geodesic.mathdoc.fr/item/IVM_2019_8_a1/