A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
The Lomov regularization method is generalized on weakly nonlinear singularly perturbed problems in the case of intersection of the roots of the characteristic equation of the limit operator. To construct asymptotic solutions, we use the idea of initial problems with the use of normal forms, first realized in nonlinear systems by Safonov V.F. and Bobodzhanov A.A.
Keywords:
singularly perturbed, normal form, regularization, asymptotic convergence.
@article{IVM_2019_8_a0,
author = {V. S. Abramov and A. A. Bobodzhanov and M. A. Bobodzhanova},
title = {A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
publisher = {mathdoc},
number = {8},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/}
}
TY - JOUR AU - V. S. Abramov AU - A. A. Bobodzhanov AU - M. A. Bobodzhanova TI - A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 3 EP - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/ LA - ru ID - IVM_2019_8_a0 ER -
%0 Journal Article %A V. S. Abramov %A A. A. Bobodzhanov %A M. A. Bobodzhanova %T A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 3-12 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/ %G ru %F IVM_2019_8_a0
V. S. Abramov; A. A. Bobodzhanov; M. A. Bobodzhanova. A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/