Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_8_a0, author = {V. S. Abramov and A. A. Bobodzhanov and M. A. Bobodzhanova}, title = {A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {8}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/} }
TY - JOUR AU - V. S. Abramov AU - A. A. Bobodzhanov AU - M. A. Bobodzhanova TI - A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 3 EP - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/ LA - ru ID - IVM_2019_8_a0 ER -
%0 Journal Article %A V. S. Abramov %A A. A. Bobodzhanov %A M. A. Bobodzhanova %T A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 3-12 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/ %G ru %F IVM_2019_8_a0
V. S. Abramov; A. A. Bobodzhanov; M. A. Bobodzhanova. A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2019), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2019_8_a0/