Four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor. An algorithm for obtaining a complete classification of such manifolds is described.
Keywords: locally homogeneous pseudo-Riemannian manifold, Lie algebra, isotropic Weyl tensor.
@article{IVM_2019_7_a7,
     author = {S. V. Klepikova},
     title = {Four-dimensional locally homogeneous {pseudo-Riemannian} manifolds with an isotropic {Weyl} tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--90},
     publisher = {mathdoc},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_7_a7/}
}
TY  - JOUR
AU  - S. V. Klepikova
TI  - Four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 86
EP  - 90
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_7_a7/
LA  - ru
ID  - IVM_2019_7_a7
ER  - 
%0 Journal Article
%A S. V. Klepikova
%T Four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 86-90
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_7_a7/
%G ru
%F IVM_2019_7_a7
S. V. Klepikova. Four-dimensional locally homogeneous pseudo-Riemannian manifolds with an isotropic Weyl tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 86-90. http://geodesic.mathdoc.fr/item/IVM_2019_7_a7/

[1] Balaschenko V. V., Nikonorov Yu. G., Rodionov E. D., Slavskii V. V., Odnorodnye prostranstva: teoriya i prilozheniya, monografiya, Poligrafist, Khanty-Mansiisk, 2008

[2] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Left-invariant Lorentz metrics on three-dimensional Lie groups with a Schouten-Weyl tensor of squared length zero”, Dokl. Math., 71:2 (2005), 238–240 | MR | Zbl

[3] Khromova O. P., Klepikov P. N., Klepikova S. V., Rodionov E. D., About Schouten-Weyl tensor on $3$-dimensional Lorentzian Lie groups, 2017, arXiv: 1708.06614 | MR

[4] Milnor J., “Curvatures of left invariant metric on Lie group”, Advances in Math., 21:3 (1976), 293–329 | DOI | MR | Zbl

[5] Gladunova O. P., Rodionov E. D., Slavskii V. V., “On harmonic tensors on three-dimensional Lie groups with left-invariant Riemannian metric”, Dokl. Math., 77:2 (2008), 306–309 | DOI | MR | Zbl

[6] Besse A., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl

[7] Khromova O. P., “Primenenie paketov analiticheskikh vychislenii dlya opredeleniya osnovnykh geometricheskikh kharakteristik nereduktivnykh odnorodnykh psevdorimanovykh mnogoobrazii”, Matematika i ee prilozheniya: fundament. probl. nauki i tekhniki, Barnaul, 2015, 320–326

[8] Klepikov P. N., Rodionov E. D., “Primenenie paketov simvolnykh vychislenii k issledovaniyu algebraicheskikh solitonov Richchi na odnorodnykh (psevdo)rimanovykh mnogoobraziyakh”, Izv. Altaisk. gos. un-ta, 2017, no. 4(96), 306–309

[9] Calvaruso G., Zaeim A., “Conformally flat homogeneous pseudo-riemannian four-manifolds”, Tohoku Math. J., 66:1 (2014), 31–54 | DOI | MR | Zbl

[10] Komrakov B. B., “Einstein-Maxwell equation on four-dimensional homogeneous spaces”, Lobachevskii J. Math., 8 (2001), 33–165 | MR | Zbl