On conditions for the oscillation of solutions to a first-order differential equation with aftereffect
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish some new effective conditions for the oscillation of solutions to linear first-order differential equations with aftereffect. We develop a new approach to obtaining oscillation conditions in the form of the upper limit of a function of parameters of an equation. The approach is applied to equations with one and several concentrated delays, and to one with distributed delay. We show the advantages of the new results over known results.
Keywords: functional differential equation, aftereffect, effective tests, several delays, distributed delay, iterative approach.
Mots-clés : oscillation
@article{IVM_2019_7_a6,
     author = {K. M. Chudinov and V. V. Malygina},
     title = {On conditions for the oscillation of solutions to a first-order differential equation with aftereffect},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--85},
     publisher = {mathdoc},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_7_a6/}
}
TY  - JOUR
AU  - K. M. Chudinov
AU  - V. V. Malygina
TI  - On conditions for the oscillation of solutions to a first-order differential equation with aftereffect
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 72
EP  - 85
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_7_a6/
LA  - ru
ID  - IVM_2019_7_a6
ER  - 
%0 Journal Article
%A K. M. Chudinov
%A V. V. Malygina
%T On conditions for the oscillation of solutions to a first-order differential equation with aftereffect
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 72-85
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_7_a6/
%G ru
%F IVM_2019_7_a6
K. M. Chudinov; V. V. Malygina. On conditions for the oscillation of solutions to a first-order differential equation with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 72-85. http://geodesic.mathdoc.fr/item/IVM_2019_7_a6/

[1] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, GITTL, M.–L., 1951

[2] Ladas G., Lakshmikantham V., Papadakis J. S., “Oscillations of higher-order retarded differential equations generated by the retarded argument”, Delay and functional differential equations and their applications, Proc. Conf. (Park City, Utah, 1972), Academic Press, New York, 1972, 219–231 | DOI | MR

[3] Tramov M. I., “Usloviya koleblemosti reshenii differentsialnykh uravnenii pervogo poryadka s zapazdyvayuschim argumentom”, Izv. vuzov. Matem., 1975, no. 3, 92–96

[4] Ladde G. S., Lakshmikantham V., Zhang B. G., Oscillation theory of differential equations with deviating arguments, Marcel Dekker, New York, 1987 | MR

[5] Chudinov K., “Note on oscillation conditions for first-order delay differential equations”, Electron. J. Qual. Theory Diff. Equat., 2016, 2, 10 pp. | MR | Zbl

[6] Braverman E., Karpuz B., “On oscillation of differential and difference equations with non-monotone delays”, Appl. Math. Comput., 218:7 (2011), 3880–3887 | MR | Zbl

[7] Koplatadze R. G., “Nuli reshenii differentsialnykh uravnenii pervogo poryadka s zapazdyvayuschim argumentom”, Tr. in-ta prikl. matem. im. I.N. Vekua, 14 (1983), 128–134

[8] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991

[9] Koplatadze R., Kvinikadze G., “On the oscillation of solutions of first-order delay differential inequalities and equations”, Georgian Math. J., 1:6 (1994), 675–685 | DOI | MR | Zbl

[10] Braverman E., Chatzarakis G. E., Stavroulakis I. P., Iterative oscillation tests for differential equations with several non-monotone arguments, Adv. Diff. Equat., 2016, 2016, 18 pp. | DOI | MR | Zbl

[11] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation theory of functional differential equations with applications, Springer, New York, 2012 | MR | Zbl

[12] Elaydi S., An introduction to difference equations, Springer, New York, 2005 | MR | Zbl

[13] Chatzarakis G. E., “Differential equations with non-monotone arguments: iterative oscillation results”, J. Math. Comput. Sci., 6:5 (2016), 953–964 | MR

[14] Chatzarakis G. E., Li T., Oscillations of differential equations generated by several deviating arguments, Adv. Diff. Equat., 2017, 2017, 24 pp. | DOI | MR | Zbl

[15] Malygina V., Sabatulina T., “On oscillation of solutions of differential equations with distributed delay”, Electron. J. Qual. Theory Diff. Equat., 2016, 116, 15 pp. | MR | Zbl

[16] Tang X. H., “Oscillation of first order delay differential equations with distributed delay”, J. Math. Anal. Appl., 289:2 (2004), 367–378 | DOI | MR | Zbl