Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of localizing (determination of position) of discontinuities of the first kind of a function of one variable and the problem of localizing $q$-jumps of a noisy function. In the first case it is assumed that the exact function is smooth except for a finite number of discontinuities of the first kind. In the second case, the exact function is smooth except for a finite number of small segments of length $2q$. It is required that the number of discontinuities ($q$-jumps) be determined and approximated their position from an approximately given function and the level of the perturbation in $L_2(\mathbb{R})$. We construct a class of regular averaging methods and obtain and estimates of the accuracy of localization, separability, and observability on classes of correctness.
Keywords: ill-posed problems, regularizing method, separation threshold, threshold of observability, discontinuity of the first kind, $q$-jump.
@article{IVM_2019_7_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_7_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_7_a0/
LA  - ru
ID  - IVM_2019_7_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_7_a0/
%G ru
%F IVM_2019_7_a0
A. L. Ageev; T. V. Antonova. Investigation of methods of localization of $q$-jumps and discontinities of firsth king of noisy function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2019_7_a0/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[3] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, the Netherlands, 1995 | MR | Zbl

[4] Winkler G., Wittich O., Liebsher V., Kempe A., “Don't shed tears over breaks”, Jahresber. Deutsch. Math.-Verein., 107:2 (2005), 57–87 | MR | Zbl

[5] Sizikov V. S., Matematicheskie metody obrabotki rezultatov izmerenii, Politekhnika, SPb., 2001

[6] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[7] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990

[8] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Ural. gos. un-ta. Matem. Mekhan. Infomatika. Vyp. 11, 2008, no. 58, 24–42

[9] Oudshoorn C. G.M., “Asymptotically minimax estimation of a function with jumps”, Bernoulli, 4:1 (1998), 15–33 | DOI | MR | Zbl

[10] Korostelev A. P., “O minimaksnom otsenivanii razryvnogo signala”, Teoriya veroyatn. i ee primenen., 32:4 (1987), 796–799 | Zbl

[11] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov $1$ roda po zashumlennym dannym”, Izv. vuzov. Matem., 2001, no. 7, 65–68

[12] Antonova T. V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychisl. matem., 13:4 (2010), 375–386 | MR | Zbl

[13] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matem. i mekhan. UrO RAN, 17:3 (2011), 30–45 | Zbl

[14] Ageev A. L., Antonova T. V., “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. in-ta matem. i mekhan. UrO RAN, 18, no. 1, 2012, 56–68

[15] Ageev A. L., Antonova T. V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse and Ill-Posed Problems, 21:2 (2013), 177–191 | DOI | MR | Zbl

[16] Bogachev V. I., Osnovy teorii mery, v. 1, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2003

[17] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974