Mots-clés : bifurcation.
@article{IVM_2019_6_a9,
author = {N. A. Pismennyy},
title = {Almost periodic solutions of nonlinear {ODE} systems with two small parameters},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {89--92},
year = {2019},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/}
}
N. A. Pismennyy. Almost periodic solutions of nonlinear ODE systems with two small parameters. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 89-92. http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/
[1] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970
[2] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956
[3] Perov A. I., “Periodicheskie, pochti periodicheskie kolebaniya i ogranichennye resheniya differentsialnykh uravnenii”, DAN SSSR, 132:3 (1960), 531–534 | Zbl
[4] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978
[5] Tkhai V. N., “Kolebaniya, ustoichivost i stabilizatsiya v modeli, soderzhaschei svyazannye podsistemy s tsiklami”, Avtomat. i telemekh., 2015, no. 7, 40–51 | Zbl
[6] Kamenski M., Makarenko O., Nistri P., “A continuation principle for a class of periodically perturbed autonomus systems”, Math. Nachrichten, 281:1 (2013), 41–61 | MR