Almost periodic solutions of nonlinear ODE systems with two small parameters
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 89-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the problem of the existence and uniqueness of almost periodic solutions of a nonlinear ODE system with two small parameters. We prove the bifurcation theorem of almost periodic solutions for a nonlinear system of differential equations with two small positive parameters and an almost periodic right-hand side from the cycle of the generating system. The averaging principal in the problem of almost periodic solutions of a system of special type differential equations with two small parameters is proved.
Keywords: almost periodic solutions, small parameters, nonlinear system
Mots-clés : bifurcation.
@article{IVM_2019_6_a9,
     author = {N. A. Pismennyy},
     title = {Almost periodic solutions of nonlinear {ODE} systems with two small parameters},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--92},
     publisher = {mathdoc},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/}
}
TY  - JOUR
AU  - N. A. Pismennyy
TI  - Almost periodic solutions of nonlinear ODE systems with two small parameters
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 89
EP  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/
LA  - ru
ID  - IVM_2019_6_a9
ER  - 
%0 Journal Article
%A N. A. Pismennyy
%T Almost periodic solutions of nonlinear ODE systems with two small parameters
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 89-92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/
%G ru
%F IVM_2019_6_a9
N. A. Pismennyy. Almost periodic solutions of nonlinear ODE systems with two small parameters. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 89-92. http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/

[1] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970

[2] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956

[3] Perov A. I., “Periodicheskie, pochti periodicheskie kolebaniya i ogranichennye resheniya differentsialnykh uravnenii”, DAN SSSR, 132:3 (1960), 531–534 | Zbl

[4] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[5] Tkhai V. N., “Kolebaniya, ustoichivost i stabilizatsiya v modeli, soderzhaschei svyazannye podsistemy s tsiklami”, Avtomat. i telemekh., 2015, no. 7, 40–51 | Zbl

[6] Kamenski M., Makarenko O., Nistri P., “A continuation principle for a class of periodically perturbed autonomus systems”, Math. Nachrichten, 281:1 (2013), 41–61 | MR