Almost periodic solutions of nonlinear ODE systems with two small parameters
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 89-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We deal with the problem of the existence and uniqueness of almost periodic solutions of a nonlinear ODE system with two small parameters. We prove the bifurcation theorem of almost periodic solutions for a nonlinear system of differential equations with two small positive parameters and an almost periodic right-hand side from the cycle of the generating system. The averaging principal in the problem of almost periodic solutions of a system of special type differential equations with two small parameters is proved.
Keywords:
almost periodic solutions, small parameters, nonlinear system
Mots-clés : bifurcation.
Mots-clés : bifurcation.
@article{IVM_2019_6_a9,
author = {N. A. Pismennyy},
title = {Almost periodic solutions of nonlinear {ODE} systems with two small parameters},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {89--92},
publisher = {mathdoc},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/}
}
N. A. Pismennyy. Almost periodic solutions of nonlinear ODE systems with two small parameters. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 89-92. http://geodesic.mathdoc.fr/item/IVM_2019_6_a9/