Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_6_a7, author = {F. G. Avkhadiev}, title = {On extremal domains for integral inequalities in the {Euclidean} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--84}, publisher = {mathdoc}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a7/} }
F. G. Avkhadiev. On extremal domains for integral inequalities in the Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 80-84. http://geodesic.mathdoc.fr/item/IVM_2019_6_a7/
[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR
[2] Rellich F., Perturbation theory of eigenvalue problems, Gordon and Breach, New York–London–Paris, 1969 | MR | Zbl
[3] Caldiroli P., Musina R., “Rellich inequalities with weights”, Calc. Var., 45 (2012), 147–164 | DOI | MR | Zbl
[4] Balinsky A. A., Evans W. D., Lewis R. T., The analysis and geometry of Hardy's inequality, Universitext, Springer, Heidelberg–New York–Dordrecht–London, 2015 | DOI | MR | Zbl
[5] Pommerenke Ch., “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR | Zbl
[6] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. matem. in-t. im. V. A. Steklova, 255, 2006, 8–18 | Zbl
[7] Avkhadiev F. G., Wirths K.-J., “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR | Zbl
[8] Avkhadiev F. G., Wirths K.-J., “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 723–736 | MR | Zbl
[9] Avkhadiev F. G., “Rellich type inequalities with weights in plane domains”, Lobachevskii J. Math., 39:4 (2018), 1–8 | MR
[10] Avkhadiev F. G., “O neravenstvakh Rellikha v evklidovom prostranstve”, Izv. vuzov. Matem., 2018, no. 8, 83–87
[11] Avkhadiev F. G., “Hardy-Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442 (2016), 469–484 | DOI | MR | Zbl