Resolvent matrix of the truncated Nevanlinna--Pick matrix interpolation problem via orthogonal rational functions in the Stieltjes class
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new representation of the resolvent matrix and extremal solutions of the truncated Nevanlinna–Pick matrix interpolation problem in the Stieltjes class functions via orthogonal matrix rational functions on $[0,\infty)$.
Keywords: truncated Nevanlinna–Pick matrix interpolation problem, matrix-valued orthogonal rational functions, resolvent matrix.
@article{IVM_2019_6_a6,
     author = {Abdon E. Choque-Rivero},
     title = {Resolvent matrix of the truncated {Nevanlinna--Pick} matrix interpolation problem via orthogonal rational functions in the {Stieltjes} class},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--79},
     publisher = {mathdoc},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a6/}
}
TY  - JOUR
AU  - Abdon E. Choque-Rivero
TI  - Resolvent matrix of the truncated Nevanlinna--Pick matrix interpolation problem via orthogonal rational functions in the Stieltjes class
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 65
EP  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_6_a6/
LA  - ru
ID  - IVM_2019_6_a6
ER  - 
%0 Journal Article
%A Abdon E. Choque-Rivero
%T Resolvent matrix of the truncated Nevanlinna--Pick matrix interpolation problem via orthogonal rational functions in the Stieltjes class
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 65-79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_6_a6/
%G ru
%F IVM_2019_6_a6
Abdon E. Choque-Rivero. Resolvent matrix of the truncated Nevanlinna--Pick matrix interpolation problem via orthogonal rational functions in the Stieltjes class. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 65-79. http://geodesic.mathdoc.fr/item/IVM_2019_6_a6/

[1] Choque Rivero A. E., “On Dyukarev's resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials”, Linear Algebra Appl., 474 (2015), 44–109 | DOI | MR | Zbl

[2] Dyukarev Yu. M., “The multiplicative structure of resolvent matrices of interpolation problems in the Stieltjes class”, Vestnik Kharkov Univ. Ser. Mat. Prikl. Mat. i Mekh., 458 (1999), 143–153 | Zbl

[3] Dyukarev Yu. M., “Nevanlinna–Pick problem for Stieltjes matrix functions”, Ukrainian Math. J., 56:3 (2004), 446–465 | DOI | MR | Zbl

[4] Dyukarev Yu. M., “Indeterminacy of interpolation problems in the Stieltjes class”, Mat. Sb., 196:3 (2005), 61–88 | DOI | MR | Zbl

[5] Dyukarev Yu. M., “A generalized Stieltjes criterion for the complete indeterminacy of interpolation problems”, Math. Notes, 84:1 (2008), 23–39 | MR

[6] Dyukarev Yu. M., “Criterion for complete indeterminacy of limiting interpolation problem of Stieltjes type in terms of orthonormal matrix functions”, Russian Math., 59:4 (2015), 61–88 | DOI | MR

[7] Dyukarev Yu. M., Serikova I. Yu., “Step-by-step solving of ordered interpolational problem for Stieltjes functions”, Russian Math., 61:6 (2017), 13–26 | DOI | MR | Zbl

[8] Dyukarev Yu. M., “Indeterminacy criteria for the Stieltjes matrix moment problem”, Math. Notes, 75:1–2 (2004), 66–82 | DOI | MR | Zbl

[9] Derevyagin M., “The Jacobi matrices approach to Nevanlinna–Pick problems”, J. Approx. Theory, 163 (2011), 117–142 | DOI | MR | Zbl

[10] Derevyagin M., Zhedanov A. S., “An operator approach to multipoint Padé approximations”, J. Approx. Theory, 157 (2019), 70–88 | DOI | MR

[11] Choque Rivero A. E., “On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials”, Linear Algebra Appl., 476 (2015), 56–84 | DOI | MR | Zbl

[12] Choque Rivero A. E., “On the solution set of the admissible control problem via orthogonal polynomials”, IEEE Trans. Autom. Control, 62:10 (2017), 5213–5219 | DOI | MR | Zbl

[13] Choque-Rivero A. E.,, “The Kharitonov theorem and robust stabilization via orthogonal polynomials”, Vest. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 86 (2017), 49–68 | Zbl

[14] Choque-Rivero A. E., “Hurwitz polynomials and orthogonal polynomials generated by Routh–Markov parameters”, Mediterr. J. Math., 2018 | DOI | MR | Zbl

[15] Blomqvist A., Lindquist A., Nagamune R., “Matrix-valued Nevanlinna–Pick interpolation with complexity constrint: an optimization approach”, IEEE Trans. Automat. Contr., 48:12 (2003), 2172–2190 | DOI | MR | Zbl

[16] Bultheel A., De Moor A., “Rational approximation in linear systems and control”, J. Comput. Appl. Math., 121:1–2 (2000), 355–378 | DOI | MR | Zbl

[17] Delsarte P., Genin Y., Kamp Y., “On the role of the Nevanlinna–Pick problem in circuit and system theory”, Int. J. Circ. Theor. and App., 9:2 (1981), 177–187 | DOI | MR | Zbl

[18] Kimura H., “State space approach to the classical interpolation problem and its applications”, Three decades of mathematical system theory, eds. H. Nijmeijier, J. M. Schumacher, Springer Verlag, Berlin, 1989, 243–275 | DOI | MR

[19] Krein M. G., Nudel'man A. A., The Markov moment problem and extremal problems, Translations of Mathematical Monographs, 50, AMS, Providence, 1977 | DOI | Zbl

[20] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993 | MR | Zbl

[21] Dyukarev Yu. M., Katsnel'son V. E., “Multiplicative and additive Stieltjes classes of analytic matrix-valued functions and interpolation problems connected with them. I”, Teor. Funktsii Funktsional. Anal. i Prilozhen., 1981, no. 36, 13–27 (in Russian) | MR | Zbl

[22] Dyukarev Yu. M., “Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem”, Mat. Sb., 207:4 (2016), 47–64 | DOI | MR | Zbl