Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_6_a5, author = {V. I. Filippov}, title = {Series of {Fourier} type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {58--64}, publisher = {mathdoc}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/} }
TY - JOUR AU - V. I. Filippov TI - Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 58 EP - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/ LA - ru ID - IVM_2019_6_a5 ER -
%0 Journal Article %A V. I. Filippov %T Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 58-64 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/ %G ru %F IVM_2019_6_a5
V. I. Filippov. Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 58-64. http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/
[1] Filippov V., Oswald P., “Representation in $L^p$ by series of translates and dilates of one function”, J. App. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[2] Filippov V. I., “O podsistemakh sistemy Fabera–Shaudera v funktsionalnykh prostranstvakh”, Izv. vuzov. Matem., 1991, no. 2, 78–85 | Zbl
[3] Filippov V. I., “Sistemy funktsii, poluchayuschiesya szhatiyami i sdvigami odnoi funktsii, v prostranstvakh $ E_{\varphi}$ s $ \lim_{t\to \infty}\frac{\varphi(t)}{t}=0$”, Izv. RAN, ser. matem., 65:2 (2001), 187–200 | DOI | Zbl
[4] Filippov V. I., “Sistemy predstavleniya, poluchennye iz szhatii i sdvigov odnoi funktsii v mnogomernykh prostranstvakh $ E_{\varphi}$”, Izv. RAN, ser. matem., 76:6 (2012), 193–206 | DOI
[5] Filippov V. I., “Ob obobscheniyakh sistemy Khaara i drugikh sistem funktsii v prostranstvakh $ E_{\varphi}$”, Izv. vuzov. Matem., 2018, no. 1, 87–92 | Zbl
[6] Borodin P. A., Konyagin S. V., “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of single function on the line”, Anal. Math., 44:2 (2018), 163–183 | DOI | MR | Zbl
[7] Kudryavtsev A. Yu., “O skhodimosti ortorekursivnykh razlozhenii po neortogonalnym vspleskam”, Matem. zametki, 92:5 (2012), 707–720 | DOI | MR | Zbl
[8] Politov A. V., “Ortorekursivnye razlozheniya v gilbertovykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1: Matem. Mekhan., 2010, no. 3, 3–7 | MR | Zbl
[9] Golubov B. I., “Absolyutnaya skhodimost dvoinykh ryadov iz koeffitsientov Fure–Khaara funktsii ogranichennoi p-variatsii”, Izv. vuzov. Matem., 2012, no. 6, 3–13 | Zbl
[10] Volosivets S. S., Golubov B. I., “Obobschennaya absolyutnaya skhodimost ryadov iz koeffitsientov Fure po sistemam tipa Khaara”, Izv. vuzov. Matem., 2018, no. 1, 10–20 | Zbl
[11] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, 2-e izd., dop., Izd-vo AFTs, M., 1999