Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of functions obtained from dilates and translations of one function in the spaces $ L_p (0,1)$, $1 \leq p \infty $. We obtain results on the representation with respect to these systems with integer coefficients of the Fourier type series. The approximation of the elements of the spaces $ L_p (0,1)$, $1 \leq p \infty$, according to the proposed methods has the property of image compression, that is, many coefficients are zero in this case. These studies may be of interest to specialists in the transfer and processing of digital information.
Keywords: Functional systems of translates and dilates of one function, Fourier type series with integer coefficients, digital information processing
Mots-clés : digital information transmission.
@article{IVM_2019_6_a5,
     author = {V. I. Filippov},
     title = {Series of {Fourier} type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--64},
     publisher = {mathdoc},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 58
EP  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/
LA  - ru
ID  - IVM_2019_6_a5
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 58-64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/
%G ru
%F IVM_2019_6_a5
V. I. Filippov. Series of Fourier type with integer coefficients by systems of dilates and translates of one function in $L_p$, $p\geq 1$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 58-64. http://geodesic.mathdoc.fr/item/IVM_2019_6_a5/

[1] Filippov V., Oswald P., “Representation in $L^p$ by series of translates and dilates of one function”, J. App. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[2] Filippov V. I., “O podsistemakh sistemy Fabera–Shaudera v funktsionalnykh prostranstvakh”, Izv. vuzov. Matem., 1991, no. 2, 78–85 | Zbl

[3] Filippov V. I., “Sistemy funktsii, poluchayuschiesya szhatiyami i sdvigami odnoi funktsii, v prostranstvakh $ E_{\varphi}$ s $ \lim_{t\to \infty}\frac{\varphi(t)}{t}=0$”, Izv. RAN, ser. matem., 65:2 (2001), 187–200 | DOI | Zbl

[4] Filippov V. I., “Sistemy predstavleniya, poluchennye iz szhatii i sdvigov odnoi funktsii v mnogomernykh prostranstvakh $ E_{\varphi}$”, Izv. RAN, ser. matem., 76:6 (2012), 193–206 | DOI

[5] Filippov V. I., “Ob obobscheniyakh sistemy Khaara i drugikh sistem funktsii v prostranstvakh $ E_{\varphi}$”, Izv. vuzov. Matem., 2018, no. 1, 87–92 | Zbl

[6] Borodin P. A., Konyagin S. V., “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of single function on the line”, Anal. Math., 44:2 (2018), 163–183 | DOI | MR | Zbl

[7] Kudryavtsev A. Yu., “O skhodimosti ortorekursivnykh razlozhenii po neortogonalnym vspleskam”, Matem. zametki, 92:5 (2012), 707–720 | DOI | MR | Zbl

[8] Politov A. V., “Ortorekursivnye razlozheniya v gilbertovykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1: Matem. Mekhan., 2010, no. 3, 3–7 | MR | Zbl

[9] Golubov B. I., “Absolyutnaya skhodimost dvoinykh ryadov iz koeffitsientov Fure–Khaara funktsii ogranichennoi p-variatsii”, Izv. vuzov. Matem., 2012, no. 6, 3–13 | Zbl

[10] Volosivets S. S., Golubov B. I., “Obobschennaya absolyutnaya skhodimost ryadov iz koeffitsientov Fure po sistemam tipa Khaara”, Izv. vuzov. Matem., 2018, no. 1, 10–20 | Zbl

[11] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, 2-e izd., dop., Izd-vo AFTs, M., 1999