On invertibility of convolution type operators in Morrey spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider integral convolution operators in the Morrey spaces. For these operators we obtain the necessary and sufficient conditions of their invertibility. Moreover, we study the Banach algebra generated by all convolution operators with summable kernels and identity operator. For this algebra we construct the symbolic calculus, in terms of which we obtain the invertibility criterion of convolution operators.
Keywords: Morrey space, convolution operator, invertibility, Banach algebra.
Mots-clés : symbol
@article{IVM_2019_6_a0,
     author = {O. G. Avsyankin},
     title = {On invertibility of convolution type operators in {Morrey} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_6_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On invertibility of convolution type operators in Morrey spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_6_a0/
LA  - ru
ID  - IVM_2019_6_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On invertibility of convolution type operators in Morrey spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_6_a0/
%G ru
%F IVM_2019_6_a0
O. G. Avsyankin. On invertibility of convolution type operators in Morrey spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2019), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2019_6_a0/

[1] Burenkov V. I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[2] Burenkov V. I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[3] Morrey C. B., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR

[4] Burenkov V. I., Tararykova T. V., “Analog neravenstva Yunga dlya svertok funktsii dlya obschikh prostranstv tipa Morri”, “Funktsionalnye prostranstva, teoriya priblizh., smezhnye vopr. analiza”, k 110-letiyu so dnya rozhdeniya akademika S. M. Nikolskogo, Tr. MIAN, 293, M., 2016, 113–132 | DOI | Zbl

[5] Burenkov V. I., Tararykova T. V., “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR

[6] Avsyankin O. G., “O kompaktnosti operatorov tipa svertki v prostranstvakh Morri”, Matem. zametki, 102:4 (2017), 483–489 | DOI | Zbl

[7] Avsyankin O. G., “Ob integralnykh operatorakh tipa Volterra s odnorodnymi yadrami v vesovykh $L_p$-prostranstvakh”, Izv. vuzov. Matem., 2017, no. 11, 3–12

[8] Simonenko I. B., “Operatory tipa svertki v konusakh”, Matem. sb., 74:2 (1967), 298–314

[9] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971

[10] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960

[11] Shilov G. E., Matematicheskii analiz (funktsii odnogo peremennogo), v. 3, Nauka, M., 1970