On Faber–Schauder coefficients of continuous functions and divergence of greedy algorighms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 63-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider relationship between the rate of convergence to zero of the Faber–Schauder coefficients of continuous functions and the behavior of the greedy algorithm. We construct a continuous function $f$ with Faber–Schauder coefficients $|A_n (f)|=O(\log^{-1} n)$ and divergent greedy algorithm.
Keywords: greedy algorithm, Faber–Schauder system
Mots-clés : coefficients of expansion, uniform convergence.
@article{IVM_2019_5_a5,
     author = {A. A. Sargsyan},
     title = {On {Faber{\textendash}Schauder} coefficients of continuous functions and divergence of greedy algorighms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--69},
     year = {2019},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_5_a5/}
}
TY  - JOUR
AU  - A. A. Sargsyan
TI  - On Faber–Schauder coefficients of continuous functions and divergence of greedy algorighms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 63
EP  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_5_a5/
LA  - ru
ID  - IVM_2019_5_a5
ER  - 
%0 Journal Article
%A A. A. Sargsyan
%T On Faber–Schauder coefficients of continuous functions and divergence of greedy algorighms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 63-69
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2019_5_a5/
%G ru
%F IVM_2019_5_a5
A. A. Sargsyan. On Faber–Schauder coefficients of continuous functions and divergence of greedy algorighms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 63-69. http://geodesic.mathdoc.fr/item/IVM_2019_5_a5/

[1] Schauder J., “Zur Theorie stetiger Abbildungen in Functionalraumen”, Math. Zeit., 26 (1927), 47–65 | DOI | MR | Zbl

[2] Temlyakov V. N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[3] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2–3 (1996), 173–187 | DOI | MR | Zbl

[4] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[5] Wojtaszczyk P., “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl

[6] Körner T. W., “Divergence of decreasing rearranged Fourier series”, Ann. Math., 144:1 (1996), 167–180 | DOI | MR | Zbl

[7] Grigoryan M. G., “O skhodimosti v metrike $L^p$ gridi algoritma po trigonometricheskoi sisteme”, Izv. NAN Armenii, 4 (2004), 89–116

[8] Grigoryan M. G., Gogyan S. L., “On nonlinear approximation with respect to the Haar system and modifications of functions”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl

[9] Gogyan S. L., “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11:2 (2005), 221–236 | MR | Zbl

[10] Dilworth S. J., Kalton N. J., Kutzarova D., “On the existence of almost greedy bases in Banach spaces”, Studia Math., 159:1 (2003), 67–101 | DOI | MR | Zbl

[11] Sargsyan A. A., “Svoistvo kvazigridi sistemnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Arm., 40:3 (2005), 46–54 | MR | Zbl

[12] Sargsyan A. A., “O kvazigridi sistemnosti i demokratichnosti nekotorykh podsistem sistemy Fabera–Shaudera”, Izv. NAN Arm., 41:2 (2006), 56–73

[13] Grigoryan M. G., Sargsyan A. A., “Nelineinaya approksimatsiya nepreryvnykh funktsii po sisteme Fabera–Shaudera”, Matem. sb., 199:5 (2008), 3–26 | DOI | MR

[14] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970