@article{IVM_2019_5_a2,
author = {M. Yu. Kokurin},
title = {On regularization procedures with linear accuracy estimates of approximations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--39},
year = {2019},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_5_a2/}
}
M. Yu. Kokurin. On regularization procedures with linear accuracy estimates of approximations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 30-39. http://geodesic.mathdoc.fr/item/IVM_2019_5_a2/
[1] Bakushinskii A. B., Kokurin M. Yu., Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012
[2] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR
[3] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR
[4] Leonov A. S., “O vozmozhnosti polucheniya lineinykh otsenok tochnosti priblizhennykh reshenii obratnykh zadach”, Izv. vuzov. Matem., 2016, no. 10, 29–35 | Zbl
[5] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo MGU, M., 1989 | MR
[6] Kokurin M. Yu., “Iterativno regulyarizovannye metody dlya neregulyarnykh nelineinykh operatornykh uravnenii s normalno razreshimoi proizvodnoi v reshenii”, Zhurn. vychisl. matem. i matem. fiz., 56:9 (2016), 1543–1555 | DOI | Zbl
[7] Kokurin M. Yu., “Accuracy estimates of Gauss–Newton type iterative regularization methods for nonlinear equations with operators having normally solvable derivative at the solution”, J. Inverse Ill-Posed Probl., 24:4 (2016), 449–462 | DOI | MR | Zbl
[8] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[9] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000 | MR
[10] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979