Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_5_a1, author = {M. B. Karmanova}, title = {Minimal graph-surfaces on arbitrary two-step {Carnot} groups}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--29}, publisher = {mathdoc}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_5_a1/} }
M. B. Karmanova. Minimal graph-surfaces on arbitrary two-step Carnot groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 15-29. http://geodesic.mathdoc.fr/item/IVM_2019_5_a1/
[1] Karmanova M., Vodopyanov S., “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Anal. and Math. Phys., Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl
[2] Karmanova M. B., “Variatsii otobrazhenii s negolonomnym obrazom i primeneniya k teorii maksimalnykh poverkhnostei”, Dokl. RAN, 468:3 (2016), 257–260 | DOI | MR | Zbl
[3] Karmanova M. B., “Maksimalnye poverkhnosti na pyatimernykh gruppovykh strukturakh”, Sib. matem. zhurn., 59:3 (2018), 561–579 | MR | Zbl
[4] Karmanova M. B., “Grafiki lipshitsevykh funktsii i minimalnye poverkhnosti na gruppakh Karno”, Sib. matem. zhurn., 53:4 (2012), 839–861 | MR | Zbl
[5] Folland G. B., Stein E. M., Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[6] Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un”, Ann. Math., 129:1 (1989), 1–60 | DOI | MR | Zbl
[7] Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiablity of mappings”, The Interaction Anal. and Geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | DOI | MR | Zbl
[8] Karmanova M. B., “O polinomialnoi subrimanovoi differentsiruemosti nekotorykh gëlderovykh otobrazhenii grupp Karno”, Sib. matem. zhurn., 58:2 (2017), 305–332 | MR | Zbl
[9] Karmanova M. B., “Formuly ploschadi dlya klassov gëlderovykh otobrazhenii grupp Karno”, Sib. matem. zhurn., 58:5 (2017), 1056–1079 | MR | Zbl