Minimal graph-surfaces on arbitrary two-step Carnot groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 15-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish basic properties of minimal graph-surfaces constructed from classes of mappings defined on two-step Carnot groups. Research methods include solving of a specific question on correctness of the problem statement. A main result on necessary minimality conditions is formulated in terms of sub-Riemannian analog of mean curvature.
Keywords:
two-step Carnot group, graph-mapping, minimal surface, mean curvature.
@article{IVM_2019_5_a1,
author = {M. B. Karmanova},
title = {Minimal graph-surfaces on arbitrary two-step {Carnot} groups},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--29},
publisher = {mathdoc},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_5_a1/}
}
M. B. Karmanova. Minimal graph-surfaces on arbitrary two-step Carnot groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2019), pp. 15-29. http://geodesic.mathdoc.fr/item/IVM_2019_5_a1/