@article{IVM_2019_4_a7,
author = {S. L. Berberyan},
title = {On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {85--88},
year = {2019},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a7/}
}
TY - JOUR
AU - S. L. Berberyan
TI - On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2019
SP - 85
EP - 88
IS - 4
UR - http://geodesic.mathdoc.fr/item/IVM_2019_4_a7/
LA - ru
ID - IVM_2019_4_a7
ER -
S. L. Berberyan. On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 85-88. http://geodesic.mathdoc.fr/item/IVM_2019_4_a7/
[1] Bagemihl F., “Some boundary properties of normal functions bounded on nontangential arcs”, Arch. Math., 14:6 (1963), 399–406 | DOI | MR | Zbl
[2] Berberyan S. L., “O granichnykh svoistvakh subgarmonicheskikh funktsii, porozhdayuschikh normalnye semeistva na podgruppakh avtomorfizmov edinichnogo kruga”, Izv. AN Arm. SSR, 15:4 (1980), 395–402 | Zbl
[3] Berberyan S. L., “Ob uglovykh granichnykh znacheniyakh normalnykh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1986, no. 3, 22–28
[4] Lappan P., “Some results on harmonic normal functions”, Math. Zeitschr., 90:1 (1965), 155–159 | DOI | MR | Zbl
[5] Rung D. C., “Asymptotic values of normal subharmonic functions”, Math. Zeitschr., 84:1 (1964), 9–15 | DOI | MR | Zbl
[6] Gavrilov V. I., “Normalnye funktsii i pochti periodicheskie funktsii”, DAN SSSR, 240:4 (1978), 768–770 | Zbl
[7] Meek J., “Of Fatous points of normal subharmonic functions”, Mathematica Japonica, 22:3 (1977), 309–314 | MR | Zbl
[8] Berberyan S. L., “On angular boundary values of subharmonic functions from the class $N$”, Mathem. Montisingri, XX-XXI (2007–2008), 5–14 | MR | Zbl
[9] Tsuji M., “Littlewoods theorem on subharmonic functions in a unit circle”, Comment. Math. Univ. St. Pauli, 5:7 (1956), 3–16 | MR | Zbl