On the existence of a solution to some mixed problems for linear differential-algebraic partial differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a linear differential-algebraic system of partial differential equations with special matrix coefficients. Two cases are investigated. The first case is when the system has a small index and a matrix at unknown vector-function in the canonical form is arbitrary. The second case is when the system has an arbitrary index, while a matrix at the small term in the canonical form has a triangular form. In both cases, using the method of characteristics and the method of successive approximations, we prove the existence of a unique classical solution of mixed problems for the considered differential-algebraic systems of partial differential equations.
Keywords: differential-algebraic system, index of system, matrix pencil, method of characteristics.
@article{IVM_2019_4_a6,
     author = {S. V. Svinina and A. K. Svinin},
     title = {On the existence of a solution to some mixed problems for linear differential-algebraic partial differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--84},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a6/}
}
TY  - JOUR
AU  - S. V. Svinina
AU  - A. K. Svinin
TI  - On the existence of a solution to some mixed problems for linear differential-algebraic partial differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 73
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_4_a6/
LA  - ru
ID  - IVM_2019_4_a6
ER  - 
%0 Journal Article
%A S. V. Svinina
%A A. K. Svinin
%T On the existence of a solution to some mixed problems for linear differential-algebraic partial differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 73-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_4_a6/
%G ru
%F IVM_2019_4_a6
S. V. Svinina; A. K. Svinin. On the existence of a solution to some mixed problems for linear differential-algebraic partial differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 73-84. http://geodesic.mathdoc.fr/item/IVM_2019_4_a6/

[1] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | Zbl

[2] Demidenko G. A., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kniga, Novosibirsk, 1998

[3] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Vopr. identifikatsii i modelirovaniya, 1968, 8–15

[4] Soto M. Selva, Tischendorf C., “Numerical analysis of DAEs from coupled circuit and semiconductor simulation”, Appl. Numer. Math., 53 (2005), 471–488 | DOI | MR | Zbl

[5] Lucht W., “Partial differential-algebraic systems of second order with symmetric convection”, Appl. Numer. Math., 53 (2005), 357–371 | DOI | MR | Zbl

[6] Gaidomak S. V., Chistyakov V. F., “O sistemakh ne tipa Koshi–Kovalevskoi indeksa $(1,k)$”, Vychisl. tekhnologii, 10:2 (2005), 45–59 | Zbl

[7] Lucht W., Strehmel K., Eichler-Liebenow C., “Indexes and special discretization methods for linear partial differential algebraic equations”, BIT, 39:3 (1999), 484–512 | DOI | MR | Zbl

[8] Campbell S. L., Marszalek W., “The index of an infinite dimensional impliscit system”, Math. and Comp. Model. of Syst., 5:1 (1999), 18–42 | DOI | MR | Zbl

[9] Gaidomak S. V., “Ob odnoi kraevoi zadache dlya lineinoi parabolicheskoi sistemy pervogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 54:4 (2014), 608–618 | DOI | MR | Zbl

[10] Gaidomak S. V., “Ob odnom algoritme chislennogo resheniya lineinoi differentsialno-algebraicheskoi sistemy uravnenii v chastnykh proizvodnykh proizvolnogo indeksa”, Zhurn. vychisl. matem. i matem. fiz., 55:9 (2015), 1530–1544 | DOI | MR | Zbl

[11] Gaidomak S. V., “Ob ustoichivosti neyavnoi splain-kollokatsionnoi raznostnoi skhemy dlya lineinykh differentsialno-algebraicheskikh uravnenii s chastnymi proizvodnymi”, Zhurn. vychisl. matem. i matem. fiz., 53:9 (2013), 44–63 | MR

[12] Bormotova O. V., Gaidomak S. V., Chistyakov V. F., “O razreshimosti vyrozhdennykh sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 4 (2005), 18–29 | MR | Zbl

[13] Kurant P., Gilbert D., Metody matematicheskoi fiziki, v. 2, GTTI, M.–L., 1933

[14] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GIFML, L., 1961

[15] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978

[16] Gaidomak S. V., “O kanonicheskoi strukture puchka vyrozhdennykh matrits-funktsii”, Izv. vuzov. Matem., 2 (2012), 23–33 | MR | Zbl

[17] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971

[18] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979

[19] Gaidomak S. V., “Metod splain-kollokatsii dlya lineinykh vyrozhdennykh giperbolicheskikh sistem”, Zhurn. vychisl. matem. i matem. fiz., 48:7 (2008), 1230–1249 | MR

[20] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004 | MR