On a problem of restriction of Fourier transform on a hypersurface
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the restriction problem of Fourier transform to model hypersurfaces. We show that the Littlewood–Paley methods allow to obtain sharp convervence estimate for the summability exponent. These estimates improve results by A. Greenleaf for model hypersurfaces.
Mots-clés : Fourier transform
Keywords: summation functions, restriction problem.
@article{IVM_2019_4_a5,
     author = {A. R. Safarov},
     title = {On a problem of restriction of {Fourier} transform on a hypersurface},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--72},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a5/}
}
TY  - JOUR
AU  - A. R. Safarov
TI  - On a problem of restriction of Fourier transform on a hypersurface
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 66
EP  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_4_a5/
LA  - ru
ID  - IVM_2019_4_a5
ER  - 
%0 Journal Article
%A A. R. Safarov
%T On a problem of restriction of Fourier transform on a hypersurface
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 66-72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_4_a5/
%G ru
%F IVM_2019_4_a5
A. R. Safarov. On a problem of restriction of Fourier transform on a hypersurface. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 66-72. http://geodesic.mathdoc.fr/item/IVM_2019_4_a5/

[1] Greenleaf A., “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl

[2] Stein E. M., Harmonic analysis, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[3] Ikromov I. A., Müller D., Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, Ann. Math. Stud., 194, Princeton Univ. Press, Princeton–Oxford, 2016 | MR | Zbl

[4] Safarov A. R., “On the $\mathbb{L}^{p}$-bound for trigonometric integrals”, Anal. Math. J., 45:1 (2019), 153–176 | DOI | MR

[5] Magyar A., “On Fourier restriction and Newton polygon”, Proc. AMS, 137:2 (2009), 615–625 | DOI | MR | Zbl

[6] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, GIFML, M., 1959

[7] Laura De Carli, Alex Iosevich, “Some sharp restriction theorems for homogeneous manifolds”, Journal of Fourier Anal. and Appl., 4:1 (1998), 105–128 | DOI | MR | Zbl

[8] Alex Iosevich, “Fourier transform, $\mathbb{L}^{2}$ restriction theorem, and scaling”, Bolletino dell'Unione Math. Italiana ser. 8, 2-B:2 (1999), 383–387 | MR | Zbl

[9] Fedoryuk M. V., Metod perevala, Nauka, M., 1977

[10] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[11] Chubarikov V. N., “O kratnykh ratsionalnykh trigonometricheskikh summakh i kratnykh integralakh”, Matem. zametki, 20:1 (1976), 61–68 | MR | Zbl

[12] Safarov A., “Otsenki nekotorykh kratnykh ostsillyatornykh integralov s polinomialnoi fazoi”, Uzbeksk. matem. zhurn., 2 (2012), 106–116