Boundary-value problem for a mixed composite functionally differential advancing-lagging equation with fractional derivative
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 52-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examines a problem for mixed equation with composite fractional derivative and concentrated time deviation, functional delay and advance with respect to spatial variable. The problem is uniquely solvable.
Keywords: mixed-type equation, integral equations, difference equation, functional delay and advance, the fractional derivative.
@article{IVM_2019_4_a4,
     author = {A. N. Zarubin},
     title = {Boundary-value problem for a mixed composite functionally differential advancing-lagging equation with fractional derivative},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--65},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a4/}
}
TY  - JOUR
AU  - A. N. Zarubin
TI  - Boundary-value problem for a mixed composite functionally differential advancing-lagging equation with fractional derivative
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 52
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_4_a4/
LA  - ru
ID  - IVM_2019_4_a4
ER  - 
%0 Journal Article
%A A. N. Zarubin
%T Boundary-value problem for a mixed composite functionally differential advancing-lagging equation with fractional derivative
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 52-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_4_a4/
%G ru
%F IVM_2019_4_a4
A. N. Zarubin. Boundary-value problem for a mixed composite functionally differential advancing-lagging equation with fractional derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 52-65. http://geodesic.mathdoc.fr/item/IVM_2019_4_a4/

[1] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O suschestvovanii rezhima ustanovivshikhsya kolebanii v zadache Koshi dlya uravneniya sostavnogo tipa”, Zhurn. vych. matem. i matem. fiziki, 41:4 (2001), 641–647 | MR | Zbl

[2] Muravnik A. B., “O zadache Koshi dlya nekotorykh differentsialno-raznostnykh uravnenii parabolicheskogo tipa”, DAN, 385:5 (2002), 604–607 | Zbl

[3] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Izd-vo Orlovsk. gos. un-ta, Orel, 1999

[4] Razgulin A. V., Zadacha upravleniya preobrazovaniem argumentov v funktsionalno-differentsialnykh uravneniyakh matematicheskoi fiziki, MAKS Press, M., 2006

[5] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[6] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[7] Ter-Krikorov A. M., Shabunin M. I., Kurs matematicheskogo analiza, Nauka, M., 1988

[8] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Izd-vo KBNTs RAN, Nalchik, 2000

[9] Zarubin A. N., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s operezhayusche-zapazdyvayuschim argumentom”, Differents. uravneniya, 48:10 (2012), 1404–1411 | Zbl

[10] Agranovich M. S., Obobschennye funktsii, MTsNMO, M., 2008

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981

[12] Zarubin A. N., “Zadacha Trikomi dlya operezhayusche-zapazdyvayuschego uravneniya smeshannogo tipa s peremennym otkloneniem argumenta”, Differents. uravneniya, 51:10 (2015), 1315–1327 | DOI | Zbl

[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam–Tokyo, 2005 | MR

[14] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Nauka, M., 1974 | MR

[15] Beklemishev D. V., Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1974

[16] Krasnov M. L., Integralnye uravneniya, Nauka, M., 1975