On solving intial-boundary value problem for system of equations in partial derivatives of the third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial-boundary value problem for the system of partial differential equations of third order. We investigate the questions of an existence unique classical solution to the considering problem and approaches of its construction. By the introduction of new unknown function the initial-boundary value problem for the system of partial differential equations of third order is reduced to an equivalent nonlocal problem with integral condition for the system of integro-differential equations of hyperbolic type and functional relation. Conditions of a unique solvability to the nonlocal problem with integral condition for the system of integro-differential equations hyperbolic type and functional relation are obtained based on the method of introduction functional parameters. Algorithms for finding a solution of the equivalent problem are proposed and their convergence are proved. Conditions of the existence unique classical solution to the initial-boundary value problem for the system of partial differential equations of third order are established in the terms of initial data.
Keywords: system of partial differential equations of third order, initial-boundary value problem, system of integro-differential equations of hyperbolic type, nonlocal problem, integral condition, solvability, algorithm.
@article{IVM_2019_4_a1,
     author = {A. T. Assanova},
     title = {On solving intial-boundary value problem for system of equations  in partial derivatives of the third order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a1/}
}
TY  - JOUR
AU  - A. T. Assanova
TI  - On solving intial-boundary value problem for system of equations  in partial derivatives of the third order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 15
EP  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_4_a1/
LA  - ru
ID  - IVM_2019_4_a1
ER  - 
%0 Journal Article
%A A. T. Assanova
%T On solving intial-boundary value problem for system of equations  in partial derivatives of the third order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 15-26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_4_a1/
%G ru
%F IVM_2019_4_a1
A. T. Assanova. On solving intial-boundary value problem for system of equations  in partial derivatives of the third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2019_4_a1/

[1] De Angelis M., Fiore G., “Existence and uniqueness of solutions of a class of third order dissipative problems with various boundary conditions describing the Josephson effect”, J. Math. Anal. and Appl., 404:2 (2013), 477–490 | DOI | MR | Zbl

[2] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[3] Asanova A. T., Dzhumabaev D. S., “Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations”, J. Math. Anal. and Appl., 402:1 (2013), 167–178 | DOI | MR | Zbl

[4] Asanova A. T., “Nelokalnaya zadacha s integralnymi usloviyami dlya sistem giperbolicheskikh uravnenii v kharakteristicheskom pryamougolnike”, Izv. vuzov. Matem., 2017, no. 5, 11–25

[5] Assanova A. T., “Solvability of a nonlocal problem for a hyperbolic equation with integral conditions”, Electronic J. Diff. Equat., 2017:170 (2017), 1–12 | MR

[6] Asanova A. T., “O nelokalnoi zadache s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii”, Differents. uravneniya, 54:2 (2018), 202–214 | DOI

[7] Asanova A. T., Dzhumabaev D. S., “Odnoznachnaya razreshimost kraevoi zadachi s dannymi na kharakteristikakh dlya sistem giperbolicheskikh uravnenii”, Zh. vychislit. matem. i matem. fiz., 42:11 (2002), 1673–1685 | MR | Zbl

[8] Asanova A. T., Dzhumabaev D. S., “Odnoznachnaya razreshimost nelokalnoi kraevoi zadachi dlya sistem giperbolicheskikh uravnenii”, Differents. uravneniya, 39:10 (2003), 1343–1354 | MR | Zbl

[9] Asanova A. T., Dzhumabaev D. S., “Korrektnaya razreshimost nelokalnykh kraevykh zadach dlya sistem giperbolicheskikh uravnenii”, Differents. uravneniya, 41:3 (2005), 337–346 | MR | Zbl

[10] Asanova A. T., “Priznaki odnoznachnoi razreshimosti nelokalnoi kraevoi zadachi dlya sistem giperbolicheskikh uravnenii so smeshannymi proizvodnymi”, Izv. vuzov. Matem., 2016, no. 5, 3–21 | MR | Zbl

[11] Kiguradze T. I., “Some boundary value problems for systems of linear partial differential equations of hyperbolic type”, Mem. Diff. Equat. Math. Phys., 1 (1994), 1–144 | MR | Zbl

[12] Pulkina L. S., “A nonlocal problem with integral conditions for hyperbolic equations”, Electronic J. Diff. Equat., 1999:45 (1999), 1–6 | MR

[13] Pulkina L. S., “Nelokalnaya zadacha dlya nagruzhennogo giperbolicheskogo uravneniya”, Tr. MIAN, 236, no. 1, 2002, 298–303 | Zbl