One-parameter monotone functionals connected with Stieltjes integrals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Stieltjes integrals we define one-parameter functionals that are monotone as a function on the parameter. We prove generalizations of some results from the papers:1) Heinig H. and Maligranda L. Weighted inequalities for monotone and concave functions, Studia Mathematica 116 (2), 133–165 (1995);2) Avkhadiev F.G. and Kayumov I.R. Comparison theorems of isoperimetric type for moments of compact sets, Collectanea Math. 55 (1), 1–9 (2004).In contrast to these papers we prove several theorems on monotonicity of integral functionals in the case when integrating functions are not absolutely continuous. In addition, we obtain applications to isoperimetric inequalities.
Keywords: Stieltjes integral, monotone function, integral inequality, norm in Lorentz space, isoperimetric inequality.
@article{IVM_2019_4_a0,
     author = {F. G. Avkhadiev},
     title = {One-parameter monotone functionals connected with {Stieltjes} integrals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_4_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - One-parameter monotone functionals connected with Stieltjes integrals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_4_a0/
LA  - ru
ID  - IVM_2019_4_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T One-parameter monotone functionals connected with Stieltjes integrals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_4_a0/
%G ru
%F IVM_2019_4_a0
F. G. Avkhadiev. One-parameter monotone functionals connected with Stieltjes integrals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2019_4_a0/

[1] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970 | MR | Zbl

[2] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971 | MR | Zbl

[3] Heinig H., Maligranda L., “Weighted inequalities for monotone and concave functions”, Studia Math., 116:2 (1995), 133–165 | MR | Zbl

[4] Barza S., Kolyada V., Soria J., “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361 (2009), 5555–5574 | DOI | MR | Zbl

[5] Stepanov V. D., Shambilova G. E., “Ogranichennost kvazilineinykh integralnykh operatorov v konuse monotonnykh funktsii”, Sib. matem. zhurn., 57:5 (2016), 1131–1155 | Zbl

[6] Avkhadiev F. G., Kayumov I. R., “Comparison theorems of isoperimetric type for moments of compact sets”, Collectanea Math., 55:1 (2004), 1–9 | MR | Zbl

[7] Polia G., Segë G., Izoperimetricheskie neravenstva matematicheskoi fiziki, Fizmatgiz, M., 1962

[8] Bandle C., Isoperimetric inequalities and applications, Monographs and studies in mathematics, 7, Pitman, London, 1980 | MR | Zbl

[9] Hersch J., “Isoperimetric monotonicity — some properties and conjectures (connection between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[10] Avkhadiev F. G., “Novye izoperimetricheskie neravenstva dlya momentov oblastei i zhestkosti krucheniya”, Izv. vuzov. Matem., 2004, no. 7, 3–11 | MR | Zbl

[11] Salahudinov R. G., “Isoperimetric inequalities for $L_p$-norms of the distance function to the boundary”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 148:2 (2006), 151–162 | Zbl

[12] Salakhudinov R. G., “Refined inequalities for euclidian moments of a domain with respect to its boundary”, SIAM J. Math. Anal., 44:4 (2012), 2949–2961 | DOI | MR | Zbl

[13] Smirnov V. I., Kurs vysshei matematiki, v. 5, Fizmatlit, M., 1959

[14] Halmos, Paul R., Measure theory, v. I, Springer-Verlag, Berlin–New York, 1974 | MR | Zbl

[15] Marshall A. W., Olkin I., Inequalities: theory and its applications, Academic Press, Inc., 1979 | MR | Zbl