Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 72-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ones of the main questions in theory of local bifurcations and its applications are questions about direction of bifurcations (sub- or supercriticality) and on stability of the solutions arising in neighborhood of a nonhyperbolic equilibrium point or cycle dynamic system. We consider problems of local bifurcations in dynamical systems with discrete time. New features are proposed to orientation of bifurcations and properties stability of bifurcation solutions for problems on basic scenarios of bifurcations. We also propose new algorithms for constructing central manifolds of the corresponding problems, allowing to obtain new bifurcation formulas, in particular, formulas to calculate Lyapunov quantities. Proposed algorithms and formulas are based on the common operator method the study of problems on local bifurcations and allow under the new conditions effective qualitative analysis of bifurcations in terms of the initial equations.
Keywords: dynamical system, discrete system, equilibrium point, stability, Lyapunov quantity, central manifold, normal form.
Mots-clés : local bifurcation, bifurcation formula
@article{IVM_2019_3_a5,
     author = {M. G. Yumagulov and M. F. Fazlytdinov},
     title = {Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--89},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/}
}
TY  - JOUR
AU  - M. G. Yumagulov
AU  - M. F. Fazlytdinov
TI  - Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 72
EP  - 89
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/
LA  - ru
ID  - IVM_2019_3_a5
ER  - 
%0 Journal Article
%A M. G. Yumagulov
%A M. F. Fazlytdinov
%T Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 72-89
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/
%G ru
%F IVM_2019_3_a5
M. G. Yumagulov; M. F. Fazlytdinov. Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 72-89. http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/

[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.–Izhevsk, 2002

[2] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 2, In-t. kompyut. issled., M.–Izhevsk, 2009

[3] Kuznetsov Y. A., Elements of applied Bifurcation Theory, 2nd ed., Springer, New York, 1998 | MR | Zbl

[4] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980

[5] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985

[6] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000

[7] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005

[8] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006

[9] Van D., Li Ch., Chou Sh. N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[10] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, NITs «Regulyarnaya i khaoticheskaya dinamika». In-t kompyut. issled., M.–Izhevsk, 2003

[11] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977

[12] Kelley Al., “The stable, center-stable, center-unstable, unstable manifolds”, J. Diff. Equat., 3:4 (1967), 546–570 | DOI | MR | Zbl

[13] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 25, 1971, 119–262 | Zbl

[14] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 26, 1972, 199–239 | Zbl

[15] Vyshinskii A. A., Ibragimova L. S., Murtazina S. A., Yumagulov M. G., “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh dinamicheskikh sistemakh”, Ufimsk. matem. zhurn., 2:4 (2010), 3–26 | MR

[16] Yumagulov M. G., “Lokalizatsiya yazykov Arnolda diskretnykh dinamicheskikh sistem”, Ufimsk. matem. zhurn., 5:2 (2013), 109–131 | MR

[17] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, DAN, 365:2 (1999), 162–164 | Zbl

[18] Kozyakin V. S., “Subfurkatsiya periodicheskikh kolebanii”, DAN SSSR, 232:1 (1977), 25–27