Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_3_a5, author = {M. G. Yumagulov and M. F. Fazlytdinov}, title = {Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--89}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/} }
TY - JOUR AU - M. G. Yumagulov AU - M. F. Fazlytdinov TI - Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 72 EP - 89 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/ LA - ru ID - IVM_2019_3_a5 ER -
%0 Journal Article %A M. G. Yumagulov %A M. F. Fazlytdinov %T Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 72-89 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/ %G ru %F IVM_2019_3_a5
M. G. Yumagulov; M. F. Fazlytdinov. Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 72-89. http://geodesic.mathdoc.fr/item/IVM_2019_3_a5/
[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.–Izhevsk, 2002
[2] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 2, In-t. kompyut. issled., M.–Izhevsk, 2009
[3] Kuznetsov Y. A., Elements of applied Bifurcation Theory, 2nd ed., Springer, New York, 1998 | MR | Zbl
[4] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980
[5] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985
[6] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000
[7] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005
[8] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006
[9] Van D., Li Ch., Chou Sh. N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005
[10] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 1, NITs «Regulyarnaya i khaoticheskaya dinamika». In-t kompyut. issled., M.–Izhevsk, 2003
[11] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977
[12] Kelley Al., “The stable, center-stable, center-unstable, unstable manifolds”, J. Diff. Equat., 3:4 (1967), 546–570 | DOI | MR | Zbl
[13] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 25, 1971, 119–262 | Zbl
[14] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 26, 1972, 199–239 | Zbl
[15] Vyshinskii A. A., Ibragimova L. S., Murtazina S. A., Yumagulov M. G., “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh dinamicheskikh sistemakh”, Ufimsk. matem. zhurn., 2:4 (2010), 3–26 | MR
[16] Yumagulov M. G., “Lokalizatsiya yazykov Arnolda diskretnykh dinamicheskikh sistem”, Ufimsk. matem. zhurn., 5:2 (2013), 109–131 | MR
[17] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, DAN, 365:2 (1999), 162–164 | Zbl
[18] Kozyakin V. S., “Subfurkatsiya periodicheskikh kolebanii”, DAN SSSR, 232:1 (1977), 25–27