On the real group actions preserving bundle of straight lines on the Lobachevskii space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 32-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lobachevskii space. In terms of the Beltrami–Klein model we obtain explicit expressions for the real group actions preserving hyperbolic or parabolic bundle of straight lines on the Lobachevskii space.
Keywords: Lobachevskii space, Beltrami–Klein model, bundle of straight lines.
@article{IVM_2019_3_a2,
     author = {E. N. Sosov},
     title = {On the real group actions preserving bundle of straight lines on the {Lobachevskii} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--37},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_3_a2/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - On the real group actions preserving bundle of straight lines on the Lobachevskii space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 32
EP  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_3_a2/
LA  - ru
ID  - IVM_2019_3_a2
ER  - 
%0 Journal Article
%A E. N. Sosov
%T On the real group actions preserving bundle of straight lines on the Lobachevskii space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 32-37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_3_a2/
%G ru
%F IVM_2019_3_a2
E. N. Sosov. On the real group actions preserving bundle of straight lines on the Lobachevskii space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 32-37. http://geodesic.mathdoc.fr/item/IVM_2019_3_a2/

[1] Sosov E. N., “O deistvii multiplikativnoi gruppy nenulevykh veschestvennykh chisel na punktirovannom prostranstve Lobachevskogo”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2012, 156–160

[2] Sosov E. N., Geometriya Lobachevskogo i ee primenenie v spetsialnoi teorii otnositelnosti, Uchebno-metodicheskoe posobie, Kazansk. un-t, Kazan, 2016

[3] Nut Yu. Yu., Geometriya Lobachevskogo v analiticheskom izlozhenii, Izd-vo AN SSSR, M., 1961

[4] Trainin Ya. L., Analiticheskaya geometriya v prostranstve Lobacheskogo, Novosibirsk. gos. pedagogicheskii in-t, Novosibirsk, 1974 | MR

[5] Sabinin L. V., “Oduli kak novyi podkhod k geometrii so svyaznostyu”, DAN SSSR, 233:5 (1977), 800–803 | MR | Zbl