Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 82-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the holonomy pseudogroup on a total immersed transversal of the canonical foliation on a smooth manifold over the algebra of dual numbers $\mathbb{D}$. We apply holonomy pseudogroups to the investigation of $\mathbb{D}$-diffeomorphisms between quotient manifolds of the algebra $\mathbb{D}$ by lattices and between $\mathbb{D}$-smooth manifolds naturally associated with an affine manifold.
Keywords: affine manifold, manifold over the algebra of dual numbers, foliated bundle, tangent bundle, tangent manifold, torus over the algebra of dual numbers, Weil bundle.
Mots-clés : foliation
@article{IVM_2019_2_a8,
     author = {A. A. Malyugina and V. V. Shurygin},
     title = {Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--88},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a8/}
}
TY  - JOUR
AU  - A. A. Malyugina
AU  - V. V. Shurygin
TI  - Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 82
EP  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a8/
LA  - ru
ID  - IVM_2019_2_a8
ER  - 
%0 Journal Article
%A A. A. Malyugina
%A V. V. Shurygin
%T Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 82-88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a8/
%G ru
%F IVM_2019_2_a8
A. A. Malyugina; V. V. Shurygin. Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 82-88. http://geodesic.mathdoc.fr/item/IVM_2019_2_a8/

[1] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9, VINITI, M., 1979, 5–246 | MR

[2] Molino P., Riemannian foliations, Birkhäuser, 1988 | MR | Zbl

[3] Thompson G., Schwardmann U., “Almost tangent and cotangent structures in the large”, Trans. AMS, 327:1 (1991), 313–328 | DOI | MR | Zbl

[4] Vaisman I., “Lagrange geometry on tangent manifolds”, Int. J. of Math. and Math. Sci., 51 (2003), 3241–3266 | DOI | MR | Zbl

[5] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001

[6] Goldman W., Hirsch M. W., “The radiance obstruction and parallel forms on affine manifolds”, Trans. Amer. Math. Soc., 26:2 (1984), 629–649 | DOI | MR

[7] Phillips J., “The holonomic imperative and the homotopy groupoid of a foliated manifold”, Rocky Mountain J. of Math., 17:1 (1987), 151–165 | DOI | MR | Zbl

[8] Shurygin V. V., “O stroenii polnykh mnogoobrazii nad algebrami Veilya”, Izv. vuzov. Matem., 2003, no. 11, 88–97

[9] Shurygin V. V., “Smooth manifolds over local algebras and Weil bundles”, J. Math. Sci., 108:2 (2002), 249–294 | DOI | MR | Zbl

[10] Diamond F., Shurman J., A first course in modular forms, Springer, 2005 | MR | Zbl

[11] Malakhaltsev M. A., “Struktury mnogoobraziya nad algebroi dualnykh chisel na tore”, Tr. geom. semin., 22, 1994, 47–62 | Zbl

[12] Malakhaltsev M. A., “Ob odnom klasse mnogoobrazii nad algebroi dualnykh chisel”, Tr. geom. semin., 21, 1991, 70–79 | Zbl

[13] Malyugina A.A, Shurygin V. V., “Predstavleniya golonomii odnogo klassa mnogoobrazii nad algebroi dualnykh chisel”, Izv. Penzensk. gos. ped. un-ta, 2011, no. 26, 128–136

[14] Shurygin V. V., “Prepyatstviya k radiantnosti dlya gladkikh mnogoobrazii nad algebrami Veilya”, Izv. vuzov. Matem., 2005, no. 5, 71–83 | Zbl