On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 69-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider and investigate a number of boundary-value problems for an elliptic equation with three singular coefficients in a rectangular parallelepiped. By the method of energy integrals, we prove the uniqueness of the solution to the stated problems. To prove the existence of solutions, we use the Fourier spectral method, based on the separation of variables. The solution to the posed problems is constructed as a sum of a double Fourier–Bessel series. In justification of the uniform convergence of the constructed series we use asymptotic estimates of the Bessel functions of the real and imaginary argument. On their basis, we obtain estimates for each term of the series. The obtained estimates made it possible to prove the convergence of the series and its derivatives up to the second order inclusive, and also the existence theorem in the class of regular solutions.
Keywords: Keldysh problem, spectral method, uniqueness of solution
Mots-clés : equations of elliptic type, singular coefficient, existence of solution.
@article{IVM_2019_2_a7,
     author = {A. K. Urinov and K. T. Karimov},
     title = {On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--81},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/}
}
TY  - JOUR
AU  - A. K. Urinov
AU  - K. T. Karimov
TI  - On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 69
EP  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/
LA  - ru
ID  - IVM_2019_2_a7
ER  - 
%0 Journal Article
%A A. K. Urinov
%A K. T. Karimov
%T On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 69-81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/
%G ru
%F IVM_2019_2_a7
A. K. Urinov; K. T. Karimov. On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 69-81. http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/

[1] Bers L., Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York–London, 1958 | MR | Zbl

[2] Serbina L. I., “A problem for the linearized Boussinesq equation with a nonlocal Samarskii condition”, Diff. equat., 38:8 (2002), 1187–1194 | DOI | MR | Zbl

[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[4] Gilbert R., Function theoretic methods in partial differential equations, Academic Press, New York, 1969 | MR | Zbl

[5] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966

[6] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Univ., Tashkent, 2005

[7] Salakhitdinov M. S., Urinov A. K., K spektralnoi teorii uravnenii smeshannogo tipa, Mumtoz So'z, Tashkent, 2010

[8] Khiiirbekov T. E., “Reshenie zadachi $N$ dlya odnogo $n$-mernogo uravneniya v normalnoi oblasti”, Kuibyshev. Volzhsk. matem. sb., 1971, no. 8, 221–226

[9] Khiiirbekov T. E., “Reshenie zadachi $T_3^ + $ dlya odnogo trekhmernogo uravneniya v proizvolnoi oblasti”, Kuibyshev. Volzhsk. matem. sb., 1971, no. 8, 215–220

[10] Nazipov I. T., “Reshenie prostranstvennoi zadachi Trikomi dlya singulyarnogo uravneniya smeshannogo tipa metodom integralnykh uravnenii”, Izv. vuzov. Matem., 2011, no. 3, 69–85

[11] Nieto J. J., Karimov E. T., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. and Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl

[12] Salakhitdinov M. S., Karimov E. T., “Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation”, Appl. Math. and Comput., 219 (2012), 3469–3476 | MR | Zbl

[13] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Appl. Math. Lett., 23 (2010), 517–522 | DOI | MR | Zbl

[14] Nieto J. J., Karimov E. T., “On an analogue of the Holmgren's problem for $3$rd singular elliptic equation”, Asian-European J. Math., 5:2 (2012) | DOI | MR

[15] Karimov K. T., “Zadacha Dirikhle dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Uzbeksk. matem. zhurn., 2017, no. 1, 96–105

[16] Urinov A. K., Karimov K. T., “Zadacha Dirikhle–Neimana dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Vestn. Nats. un-ta Uzbekistana, 2/1 (2017), 195–206

[17] Urinov A. K., Karimov K. T., “Zadacha Dirikhle dlya ellipticheskogo uravneniya s tremya singulyarnymi koeffitsientami”, VIII mezhdunarodn. konf. po matem. modelirovaniyu (Yakutsk, 2017), 59

[18] Karimov K. T., “Kraevaya zadacha dlya ellipticheskogo uravneniya s tremya singulyarnymi koeffitsientami v trekhmernom prostranstve”, Uzbeksk. matem. zhurn., 2017, no. 4, 59–66

[19] Khachev M. M., “O nekotorykh modelnykh zadachakh v teorii uravnenii smeshannogo tipa”, Nauchn. internet zhurn. “Mir nauki”, 2014, no. 4

[20] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183 | Zbl

[21] Safina R. M., “Zadacha Keldysha dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. Samarsk. gos. un-ta, 2015, no. 3, 53–64

[22] Safina R. M., “Zadacha Keldysha dlya uravneniya smeshannogo tipa vtorogo roda s operatorom Besselya”, Differents. uravneniya, 51:10 (2015), 1354–1366 | DOI | Zbl

[23] Vatson G. N., Teoriya besselevykh funktsii, v. 1, In. lit., M., 1949

[24] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv.vuzov. Matematika, 1960, no. 6, 214–225 | Zbl

[25] Vostrova L. E., Pulkin S. P., “Singulyarnaya zadacha s normalnoi proizvodnoi”, Volzhsk. matem. sb., 1966, no. 5, 49–57

[26] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014

[27] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1969

[28] Kuznetsov D. S., Spetsialnye funktsii, Vysshaya shkola, M., 1962

[29] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Mir, M., 1986

[30] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1969