Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_2_a7, author = {A. K. Urinov and K. T. Karimov}, title = {On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {69--81}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/} }
TY - JOUR AU - A. K. Urinov AU - K. T. Karimov TI - On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 69 EP - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/ LA - ru ID - IVM_2019_2_a7 ER -
%0 Journal Article %A A. K. Urinov %A K. T. Karimov %T On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 69-81 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/ %G ru %F IVM_2019_2_a7
A. K. Urinov; K. T. Karimov. On unique solvability of boundary-value problems for three-dimentional elliptic equation with three singular coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 69-81. http://geodesic.mathdoc.fr/item/IVM_2019_2_a7/
[1] Bers L., Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York–London, 1958 | MR | Zbl
[2] Serbina L. I., “A problem for the linearized Boussinesq equation with a nonlocal Samarskii condition”, Diff. equat., 38:8 (2002), 1187–1194 | DOI | MR | Zbl
[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981
[4] Gilbert R., Function theoretic methods in partial differential equations, Academic Press, New York, 1969 | MR | Zbl
[5] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966
[6] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Univ., Tashkent, 2005
[7] Salakhitdinov M. S., Urinov A. K., K spektralnoi teorii uravnenii smeshannogo tipa, Mumtoz So'z, Tashkent, 2010
[8] Khiiirbekov T. E., “Reshenie zadachi $N$ dlya odnogo $n$-mernogo uravneniya v normalnoi oblasti”, Kuibyshev. Volzhsk. matem. sb., 1971, no. 8, 221–226
[9] Khiiirbekov T. E., “Reshenie zadachi $T_3^ + $ dlya odnogo trekhmernogo uravneniya v proizvolnoi oblasti”, Kuibyshev. Volzhsk. matem. sb., 1971, no. 8, 215–220
[10] Nazipov I. T., “Reshenie prostranstvennoi zadachi Trikomi dlya singulyarnogo uravneniya smeshannogo tipa metodom integralnykh uravnenii”, Izv. vuzov. Matem., 2011, no. 3, 69–85
[11] Nieto J. J., Karimov E. T., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. and Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl
[12] Salakhitdinov M. S., Karimov E. T., “Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation”, Appl. Math. and Comput., 219 (2012), 3469–3476 | MR | Zbl
[13] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Appl. Math. Lett., 23 (2010), 517–522 | DOI | MR | Zbl
[14] Nieto J. J., Karimov E. T., “On an analogue of the Holmgren's problem for $3$rd singular elliptic equation”, Asian-European J. Math., 5:2 (2012) | DOI | MR
[15] Karimov K. T., “Zadacha Dirikhle dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Uzbeksk. matem. zhurn., 2017, no. 1, 96–105
[16] Urinov A. K., Karimov K. T., “Zadacha Dirikhle–Neimana dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Vestn. Nats. un-ta Uzbekistana, 2/1 (2017), 195–206
[17] Urinov A. K., Karimov K. T., “Zadacha Dirikhle dlya ellipticheskogo uravneniya s tremya singulyarnymi koeffitsientami”, VIII mezhdunarodn. konf. po matem. modelirovaniyu (Yakutsk, 2017), 59
[18] Karimov K. T., “Kraevaya zadacha dlya ellipticheskogo uravneniya s tremya singulyarnymi koeffitsientami v trekhmernom prostranstve”, Uzbeksk. matem. zhurn., 2017, no. 4, 59–66
[19] Khachev M. M., “O nekotorykh modelnykh zadachakh v teorii uravnenii smeshannogo tipa”, Nauchn. internet zhurn. “Mir nauki”, 2014, no. 4
[20] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183 | Zbl
[21] Safina R. M., “Zadacha Keldysha dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. Samarsk. gos. un-ta, 2015, no. 3, 53–64
[22] Safina R. M., “Zadacha Keldysha dlya uravneniya smeshannogo tipa vtorogo roda s operatorom Besselya”, Differents. uravneniya, 51:10 (2015), 1354–1366 | DOI | Zbl
[23] Vatson G. N., Teoriya besselevykh funktsii, v. 1, In. lit., M., 1949
[24] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv.vuzov. Matematika, 1960, no. 6, 214–225 | Zbl
[25] Vostrova L. E., Pulkin S. P., “Singulyarnaya zadacha s normalnoi proizvodnoi”, Volzhsk. matem. sb., 1966, no. 5, 49–57
[26] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014
[27] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1969
[28] Kuznetsov D. S., Spetsialnye funktsii, Vysshaya shkola, M., 1962
[29] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Mir, M., 1986
[30] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1969