On existence of frames based on the Szeg\"{o} kernel in the Hardy space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 57-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that a sequence of functions constructed by sampling of the Szegö kernel cannot be the Duffin–Shaeffer frame for the Hardy space on the unit disk. In this paper we show that by using the more general concept of a frame the problem of existence of a frame based on the Szegö kernel has a solution.
Keywords: Duffin–Schaeffer frames, Banach frames, framing model, reproducing kernel Hilbert space, Hardy space, Szegö kernel.
@article{IVM_2019_2_a6,
     author = {K. S. Speransky and P. A. Terekhin},
     title = {On existence of frames based on the {Szeg\"{o}} kernel in the {Hardy} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--68},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/}
}
TY  - JOUR
AU  - K. S. Speransky
AU  - P. A. Terekhin
TI  - On existence of frames based on the Szeg\"{o} kernel in the Hardy space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 57
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/
LA  - ru
ID  - IVM_2019_2_a6
ER  - 
%0 Journal Article
%A K. S. Speransky
%A P. A. Terekhin
%T On existence of frames based on the Szeg\"{o} kernel in the Hardy space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 57-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/
%G ru
%F IVM_2019_2_a6
K. S. Speransky; P. A. Terekhin. On existence of frames based on the Szeg\"{o} kernel in the Hardy space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 57-68. http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/

[1] Lukashenko T. P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 1 (2001), 6–10 | Zbl

[2] Galatenko V. V., Lukashenko T. P., Sadovnichii V. A., “O svoistvakh ortorekursivnykh razlozhenii po podprostranstvam”, Tr. MIAN, 284, 2014, 138–141 | MR | Zbl

[3] Temlyakon V. N., “Greedy approximation”, Acta Numer., 17 (2008), 235–409 | DOI | MR

[4] Duffin R. J., Schaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl

[5] Feichtinger H. G., Gröchenig K., “Banach spaces related to integrable group representations and their atomic decomposition. I”, J. Funct. Anal., 86 (1989), 307–340 | DOI | MR | Zbl

[6] Feichtinger H. G., Gröchenig K., “Banach spaces related to integrable group representations and their atomic decomposition. II”, Monatsh. Math., 108 (1989), 129–148 | DOI | MR | Zbl

[7] Gröchenig K., “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–41 | DOI | MR

[8] Casazza P. G., Han D., Larson D. R., “Frames for Banach spaces”, Contemp. Math., 247, 1999, 149–182 | DOI | MR | Zbl

[9] Casazza P. G., Christensen O., Stoeva D., “Frame expansion in separable Banach spaces”, J. Math. Anal. Appl., 307:2 (2005), 710–723 | DOI | MR | Zbl

[10] Duren P., Schuster A., Bergman spaces, AMS, Providence, RI, 2004 | MR | Zbl

[11] Bari N. K., “Biortogonalnye sistemy i bazisy gilbertova prostranstva”, Matem. IV, Uchen. zap. MGU, 148, 1951, 69–107

[12] Christensen O., An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd rev. ed., Birkhäuser/Springer, New York, 2016 | DOI | MR | Zbl

[13] Partington J. R., Interpolation, indentification, and sampling, Clarendon Press, Oxford, 1997 | MR

[14] Zhang H., Zhang J., “Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products”, Appl. Comput. Harmon. Anal., 31 (2011), 1–25 | DOI | MR | Zbl

[15] Song M.-S., Jorgensen P. E. T., “Reproducing kernel Hilbert space vs. frame estimates”, Math., 3 (2015), 615–625 | DOI | Zbl

[16] Führ H., Gröchenig K., Haimi A., Klotz A., Romero J. L., “Density of sampling and interpolation in reproducing kernel Hilbert spaces”, J. London Math. Soc., 96:2 (2017) | MR | Zbl

[17] Gao J., Harris C., Gunn S., “On a class of a support vector kernels based on frames in function Hilbert spaces”, Neural Comput., 13:9 (2001), 1975–1994 | DOI | Zbl

[18] Rakotomamonjy A., Canu S., “Frames, reproducing kernels, regularization and learning”, Journal of Machine Learning Research, 6 (2005), 1485–1515 | MR | Zbl

[19] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[20] Marcus A. W., Spielman D. A., Srivastava N., “Interlacing families II: mixed characteristic polynomials and the Kadison–Singer problem”, Ann. Math., 182:1 (2015), 327–350 | DOI | MR | Zbl

[21] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966

[22] Totik V., “Recovery of $H^p$-functions”, Proc. Amer. Math. Soc., 90:4 (1984), 531–537 | MR | Zbl

[23] Terekhin P. A., “Sistemy predstavleniya i proektsii bazisov”, Matem. zametki, 75:6 (2004), 944–947 | DOI | Zbl

[24] Terekhin P. A., “Banakhovy freimy v zadache affinnogo sinteza”, Matem. sb., 200:9 (2009), 127–146 | DOI | Zbl

[25] Terekhin P. A., “Freimy v banakhovom prostranstve”, Funkts. analiz i ego prilozh., 44:3 (2010), 50–62 | DOI

[26] Schaefer H. H., Wolff M. P., Topological vector spaces, Grad. Text in Math., 2nd ed., Springer-Verlag, New York, 1999 | DOI | MR | Zbl