On existence of frames based on the Szeg\"{o} kernel in the Hardy space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 57-68

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that a sequence of functions constructed by sampling of the Szegö kernel cannot be the Duffin–Shaeffer frame for the Hardy space on the unit disk. In this paper we show that by using the more general concept of a frame the problem of existence of a frame based on the Szegö kernel has a solution.
Keywords: Duffin–Schaeffer frames, Banach frames, framing model, reproducing kernel Hilbert space, Hardy space, Szegö kernel.
@article{IVM_2019_2_a6,
     author = {K. S. Speransky and P. A. Terekhin},
     title = {On existence of frames based on the {Szeg\"{o}} kernel in the {Hardy} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--68},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/}
}
TY  - JOUR
AU  - K. S. Speransky
AU  - P. A. Terekhin
TI  - On existence of frames based on the Szeg\"{o} kernel in the Hardy space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 57
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/
LA  - ru
ID  - IVM_2019_2_a6
ER  - 
%0 Journal Article
%A K. S. Speransky
%A P. A. Terekhin
%T On existence of frames based on the Szeg\"{o} kernel in the Hardy space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 57-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/
%G ru
%F IVM_2019_2_a6
K. S. Speransky; P. A. Terekhin. On existence of frames based on the Szeg\"{o} kernel in the Hardy space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 57-68. http://geodesic.mathdoc.fr/item/IVM_2019_2_a6/