Axisymmetric helical flow of viscous fluid
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Helical flow is called a flow in which the velocity vector is collinear to the vorticity vector. For ideal fluid examples are known of stationary helical flows (Gromeka–Beltrami flows, ABC-flows, etc.) and it is proved that the existence of unsteady helical flows is impossible (Beltrami, 1889). For a viscous fluid examples are known of unsteady helical flows (Trkal, 1919). But it is still unknown whether there can exist a stationary helical flow of a viscous fluid. In the present article this question is investigated using the Navier–Stokes equations in the axisymmetric case. It was assumed that the coefficient of proportionality between the vorticity and velocity may depend on the spatial coordinates. It is shown that in the axisymmetric case, the existance of such flows is impossible. This study solved the problem of the existence of axisymmetric helical flows of an incompressible fluid.
Keywords: helical flow, Navier–Stokes equations, axisymmetric flow of a viscous fluid.
@article{IVM_2019_2_a5,
     author = {G. B. Sizykh},
     title = {Axisymmetric helical flow of viscous fluid},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--56},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a5/}
}
TY  - JOUR
AU  - G. B. Sizykh
TI  - Axisymmetric helical flow of viscous fluid
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 49
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a5/
LA  - ru
ID  - IVM_2019_2_a5
ER  - 
%0 Journal Article
%A G. B. Sizykh
%T Axisymmetric helical flow of viscous fluid
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 49-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a5/
%G ru
%F IVM_2019_2_a5
G. B. Sizykh. Axisymmetric helical flow of viscous fluid. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 49-56. http://geodesic.mathdoc.fr/item/IVM_2019_2_a5/

[1] Gromeka I. S., “Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti”, Uchen. zap. Kazansk. un-ta, 1881

[2] Beltrami E., “Considerazioni idrodinamiche”, Rend. Inst. Lombardo Acad. Sci. Lett., 22 (1889), 122–131

[3] Arnold V. I., “Sur la topologie des'ecoulements stationnaires des fluids parfaits”, Comptes Rendus Acad Sci Paris, 261 (1965), 17–20 | MR | Zbl

[4] Dombre T., Fisch U., Greene J. M., et.al., “Chaotic streamlines in the ABC flows”, J. Fluid Mech., 167 (1986), 353–391 | DOI | MR | Zbl

[5] Vereshchagin V. P., Subbotin Y. N., Chernykh N. I., “On the mechanics of helical flows in an ideal incompressible nonviscous continuous medium”, Proc. of the Steklov Institute of Math., 284, S1 (2014), 159–174 | DOI | MR

[6] Kovalev V. P., Sizykh G. B., “Osesimmetrichnye vintovye techeniya idealnoi zhidkosti”, Tr. MFTI, 8:3 (2016), 171–179

[7] Truesdell C., The kinematics of vorticity, Indiana Univ. Press, Bloomington, 1954 | MR | Zbl

[8] Drazin P. G., Riley N., The Navier–Stokes equations: A classification of flows and exact solutions, Cambridge Univ. Press, 2006 | MR | Zbl

[9] Trkal V., “Poznámka k hydrodynamice vazkých tekutin”, {C̆}asopis pro p{ĕ}stování matematiky a fysiky (Praha), 48:3 (1919), 302–311 | Zbl

[10] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B., “Poluchenie primerov tochnykh reshenii uravnenii Nave-Stoksa dlya vintovykh techenii metodom summirovaniya skorostei”, Tr. MFTI, 9:1 (2017), 71–88

[11] Byushgens S. S., “O vintovom potoke”, Nauchn. zap. Moskovsk. gidromeliorativnogo in-ta (MGMI), 17 (1948), 73–90

[12] Lamb G., Gidrodinamika, OGIZ. GITTL, M., 1947

[13] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003

[14] Betchelor Dzh., Vvedenie v dinamiku zhidkosti, Mir, M., 1973